Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 805-811    https://doi.org/10.11896/cldb.201905012
  无机非金属及其复合材料 |
石墨烯复合吸波材料的研究进展及未来发展方向
贾琨1,2, 王东红1,2, 李克训1,2, 谷建宇1,2, 刘伟1,2
1 电磁防护材料及技术山西省重点实验室,太原 030032;
2 中国电子科技集团公司第33研究所,太原 030032
Progress and Future Developments of Graphene Composites Serving as MicrowaveAbsorbing Materials
JIA Kun1,2, WANG Donghong1,2, LI Kexun1,2, GU Jianyu1,2, LIU Wei1,2
1 Electromagnetic Protection Materials and Technology Key Laboratory of Shanxi Province, Taiyuan 030032;
2 NO.33 Research Institute of China Electronics Technology Group Corporation, Taiyuan 030032
下载:  全 文 ( PDF ) ( 1796KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 吸波材料是解决电磁波辐射污染的有效手段和影响雷达隐身的关键因素,该材料的研究对军用和民用都具有非常重要的意义,因此它一直是各国尖端科技的重要研究方向之一。自石墨烯被首次发现,学术界便掀起了对二维材料的研究热潮,相关学者开展了各类型石墨烯复合材料的研究,且在吸波领域的理论研究和新型吸波材料的开发取得了突出成果,短短几年时间内,石墨烯已经成为了新型复合吸波材料的研究热点。相比铁氧体、炭黑等传统吸波材料,石墨烯应用于吸波材料具有以下优势:(1)独特的二维材料性质、巨大的性能可调控工作表面;(2)良好的导电性以及特殊的边界效应。
然而,单纯以石墨烯作为吸波剂的吸波材料,其性能测试结果与预期值存在显著差距,无法实现开发一种新型轻质、高效吸波材料的预期目标。因此,近三年来石墨烯复合吸波材料的研究重点主要集中在石墨烯二维结构的吸波机理和石墨烯/磁损耗型复合吸波材料的制备,研究者主要从选择合适的磁性纳米成分和优化制备工艺方面不断探索,并取得了丰硕的成果,深度挖掘出石墨烯对电磁波的潜在吸波性能。目前,通过优化石墨烯复合吸波材料组分已基本可以实现2~18 GHz频段范围内反射率小于-10 dB。
对于石墨烯电磁波吸收机理的研究,主要依托其二维结构,应用密度泛函理论和原子-键电负性均衡理论模型来探索本征石墨烯和掺杂石墨烯的构型;在较高性能的石墨烯复合吸波材料制备过程中已取得成功应用的磁性纳米成分包括四氧化三铁、铁酸镍、硫化镉等。其中,以四氧化三铁、氧化铁为代表的铁氧体应用得最早;随着共沉淀法、溶剂热法等制备方法的不断成熟,各类新型磁性纳米颗粒可以与石墨烯复合,使之兼具磁损耗和电损耗能。近两年,相关学者将超材料的思想引入石墨烯复合吸波材料的研发中,以结构设计为手段,实现了新型透明石墨烯复合吸波材料的制备。此外,由于石墨烯自身的功能特性,石墨烯复合吸波材料大多也具有高效的热传导性能和良好的结构强度,可以实现材料的结构功能一体化。
本文归纳总结了石墨烯复合吸波材料的研究历程和最新研究进展,介绍了石墨烯复合吸波材料的二维结构吸波机理、磁性掺杂成分的选择、大尺寸材料的制备工艺,分析了石墨烯复合吸波材料亟需解决的问题并展望其未来发展前景,以期为制备“宽薄轻强”的新型石墨烯复合吸波材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾琨
王东红
李克训
谷建宇
刘伟
关键词:  石墨烯  复合吸波材料  吸波性能    
Abstract: Microwave absorbing material is an effective measure to solve the electromagnetic radiation pollution and a key factor affecting radar stealth. Its research is of great significance for both military and civilian applications, which is as well as one of important research areas of high technology around the world. Since the first discovery of graphene, the research upsurge on 2D material in has been raised in the academic circles. Related scholars carried out the research of various types of graphene composites; they also have made some outstanding achievements in theoretical research of microwave absorbing field and development of new absorbing materials. Graphene has already become a research hotspot of new composite absorbing material in a few years. Compared with the traditional absorbing materials such as ferrite and carbon black, graphene has the following advantages: (1) unique two-dimensional material properties, huge performance can be controlled the working surface; (2) good conductivity and special boundary effect. Compared with Ferrite, carbon black and other traditional absorbing materials, graphene has following advantages: (1) the unique 2D material property and the performance of huge working surface can be controlled; (2)good electrical conductivity and special edge effect.
However, there is a significant difference between the performance test results and the expected values of the absorbing materials with graphene as the absorbent, resulting in the expected goal of developing a new type of lightweight and high efficiency absorbing material can not be achieved. Therefore, in the past three years, the research focus of graphene composite absorbing materials has been mainly in absorbing mechanism of graphene 2D structure and preparation of graphene/magnetic loss composite absorbing materials. Researchers have been continuously explored new suitable magnetic nano-composition as well as optimized preparation technology, and achieved fruitful results. The potential wave absorbing property of graphene has been deeply excavated. At present, the reflectivity lower than -10 dB can basically realize within frequency band of 2—18 GHz by optimizing composition of graphene composite absorbing material.
The researches on the wave absorbing mechanism of graphene were mainly relied on its 2D structure, using density functional theory (DFT) and atom-bond electronegativity equilibrium theory model for the investigatiiona of configurations of intrinsic graphene and doped graphene. During the preparation process of high-performance graphene composite absorbing material, magnetic nano-composition including ferroferric oxide, nickel ferrite, cadmium sulfide have been successfully applied. Ferrite that represented by ferroferric oxide and iron oxide was the earliest one. With advances in co-precipitation method, solvothermal method and other preparation methods, various new magnetic nanoparticles can be combined with graphene to make them have both magnetic loss and electrical energy loss. In recent two years, related scholars have introduced metamaterial into the research and development of graphene compo-site absorbing material and realized preparation of a new transparent graphene composite absorbing material by means of designing the sturcture. In addition, due to own functional property of graphene, most of the graphene composite absorbing materials also have high-efficiency thermal conductivity and good structural strength that can realize the integration of structure and function.
This paper summarizes the research efforts and the latest research progress of graphene composite microwave absorbing materials, introduces their two-dimensional structural wave-absorption mechanism, the selection of magnetic doping components and preparation process of large-scale materials, respectively. Otherwise, we pay attention to the problems confronting the current state of the graphene composite microwave absorbing materials and look forward to their future development prospects, in order to provide a reference for the preparation of “wide, thin and light” new graphene composite microwave absorbing materials.
Key words:  graphene    composite microwave absorbing materials    wave absorbing property
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TN972  
  TM25  
基金资助: 国家自然科学基金(U1710115);山西省自然科学基金(201701D121050;201801D121004);四川省军民融合产业发展专项基金项目(zyf-2017-70)
作者简介:  贾琨,工程师,2015年6月毕业于西南大学材料与能源学部,获得工学硕士学位。现工作于电磁防护材料及技术山西省重点实验室,目前主要从事碳纳米导热吸波材料制备技术研究。王东红,高级工程师,电磁防护材料及技术山西省重点实验室副主任。2008年毕业于西北工业大学材料学专业,获博士学位cetc33wdh@163.com。
引用本文:    
贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
JIA Kun, WANG Donghong, LI Kexun, GU Jianyu, LIU Wei. Progress and Future Developments of Graphene Composites Serving as MicrowaveAbsorbing Materials. Materials Reports, 2019, 33(5): 805-811.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905012  或          http://www.mater-rep.com/CN/Y2019/V33/I5/805
1 Luo B, Liu S, Zhi L, et al. Small,2012,8,630.
2 Chen Y, Zhang B, Liu G, et al. Chemical Society Reviews,2012,41,4688.
3 Wan X, Huang Y, Chen Y. Accounts of Chemical Research,2012,45,598.
4 Novoselov K S, Geim A K, Morozov S V, et al. Science,2004,306(5061),666.
5 Li X, Zhao W F, Chen G H.Materials Review,2008,22(8),48(in Chinese).
李旭,赵卫峰,陈国华.材料导报,2008,22(8),48.
6 Zhang Y B, Tan Y W, Stormer H L, et al. Nature,2005,438,201.
7 Bolotin K I, Jiang Z, Sikes K J, et al. Solid State Communications,2008,146,351.
8 Lee C, Wei X, Kysar J W, et al. Science,2008,321,385.
9 Wang C, Hart X J, Xu P, et al. Applied Physics Letters,2011,98,072906.
10 Singh V K, Shukla A, Patra M K, et al. Carbon,2012,50,2202.
11 Balandin A A, Ghosh S, Bao W, et al. Nano Letters,2008,8,902.
12 Stoller M D, Park S, Zhu Y, et al. Nano Letters,2008,8,3498.
13 Li Y, Zhang S. Materials Research Express,2016,3,075012.
14 Ying L, Jia C, Qi J, et al. Applied Surface Science,2011,257(14),6059.
15 Wang J J, Zhu M Y, Outlaw R A, et al. Carbon,2004,42,2867.
16 Forbeaux I, Themlin J, Charrier A, et al. Applied Surface Science,2000,162,406.
17 Bazargan A M, Sharif F, Mazinani S, et al. Journal of Materials Science: Materials in Electronics,2017,28,1419.
18 Xu Y, Yu H. Nanoscale Research Letters,2017,12,254.
19 Lin X H, Gai J G. RSC Advances,2016,6,17818.
20 Chao T, Xie D, Wang J F. Advanced Functional Materials,2017,27,1700240.
21 Zhang H L, Sun L, Han J N. Acta Physica Sinica,2017,66(24),246101(in Chinese).
张华林,孙琳,韩佳凝.物理学报,2017,66(24),246101.
22 Wang G. Growth and regulation of graphene materials. Ph.D. Thesis, Lanzhou University, China,2016(in Chinese).
王刚.石墨烯材料的生长与调控.博士学位论文,兰州大学,2016.
23 Xue Y, Wu B, Bao Q L, et al. Small,2014,10(15),2975.
24 Zhang Y Q, Liang Y M, Zhou J X. Acta Chimica Sinica,2014,72(3),367(in Chinese).
张芸秋,梁勇明,周建新.化学学报,2014,72(3),367.
25 Tadjarodi A, Rahimi R, Imani M, et al. Journal of Alloys & Compounds,2012,542(1),43.
26 Wang W, Wang C G, Guo Y, et al. Journal of Aeronautical Materials,2012,32(1),63(in Chinese).
王雯,王成国,郭宇,等.航空材料学报,2012,32(1),63.
27 Zhai Y H, Zhang Y. Polymer Bulletin,2014(5),33(in Chinese).
翟滢皓,张勇.高分子通报,2014(5),33.
28 Zheng X, Feng J, Zong Y, et al. Journal of Materials Chemistry C,2015,3(17),4452.
29 Jin H Y, Tang M R, Han Y D, et al. Journal of Southeast University (English Edition),2015,31(4),511.
30 Hu C G, Mou Z Y, Lu G W, et al. Physical Chemistry Chemical Physics,2013,15,13038.
31 Fu M, Jiao Q Z, Zhao Y. Journal of Materials Chemistry A,2013,1,5577.
32 Zhang D D, Zhao D L, Zhang J M, et al. Journal of Alloys & Compounds,2014,589,378.
33 Hu C G , Mou Z Y, Lu G W, et al. Physical Chemistry Chemical Phy-sics,2013,15,13038.
34 Li X H, Feng J, Zhu H, et al. RSC Advances,2014,4,33619.
35 Ren Y L, Zhu C L, Qi L H, et al. RSC Advances,2014,4,21510.
36 Zhu Z, Sun X, Li G, et al. Journal of Magnetism and Magnetic Mate-rials,2015,377,95.
37 Wang L, Huang Y, Li C, et al. Physical Chemistry Chemical Physics,2015,17,2228.
38 Li X H, Feng J, Du Y, et al. Journal of Materials Chemistry A,2015,3,5535.
39 He H C, Luo F F , Qian N, et al. Journal of Applied Physics,2015,117,085502.
40 Das S, Nayak G C, Sahu S K, et al. Journal of Magnetism and Magnetic Materials,2015,384,224.
41 Shen B, Li Y, Yi D, et al. Carbon,2016,102,154.
42 Moitra D, Ghosh B K, Chandel M, et al. RSC Advances,2016,6(17),14090.
43 Huang X, Yan X, Xia L, et al. Scripta Materialia,2016,120,107.
44 Ding X, Huang Y, Li S, et al. RSC Advances,2016,6(37),31440.
45 Jiang Y N, Wang Y, Ge D B, et al. Acta Physica Sinica,2016,65(5),054101(in Chinese).
姜彦南,王扬,葛德飙,等.物理学报,2016,65(5),75.
46 Yao B, Chen C G, Li M, et al. Materials Review A: Review Papers,2016,30(10),77(in Chinese).
姚斌,程朝歌,李敏,等.材料导报:综述篇,2016,30(10),77.
47 Jia K, Li K X, Zhang Z K, et al. Journal of Function Material,2018,49(2),02136(in Chinese).
贾琨,李克训,张泽奎,等.功能材料,2018,49(2),02136.
48 Linda H, Karlsson A, Jens Birch. Vacuum,2017,137,191.
49 Li Y, Zhang S. Materials Research Express,2016,3,075012.
50 Bazargan A M, Sharif F, Mazinani S, et al. Journal of Materials Science: Materials in Electronic,2017,28,1419.
51 Watts P C, Hsu W K, Barnes A, et al. Advanced Materials,2003,15(7-8),600.
52 Zhang X F, Dong X L, Huang H, et al. Nanotechnology,2007,18(27),275701.
53 Ma W S, Deng B J. Acta Materiae Compositae Sinica,2011,28(4),40(in Chinese).
马文石,邓帮君.复合材料学报,2011,28(4),40.
54 Lv H L, Ji G B, Liang X H, et al. Journal of Materials Chemistry C,2015,3(19),5056.
55 Mou Q H, Feng S Y. Journal of Shandong University(Engineering Science),2011,41(2),130(in Chinese).
牟秋红,冯圣玉.山东大学学报(工学版),2011,41(2),130.
56 Xing Y, Zhang Y, Zhang H M. Acta Polymerica Sinica,2015(6),706(in Chinese).
邢妍,张勇,张红梅.高分子学报
,2015(6),706.
57 Yuan B Q, Yu L M, Sheng L M, et al. Acta Materiae Compositae Sinica,2013,30(1),22(in Chinese).
袁冰清,郁黎明,盛雷梅,等.复合材料学报,2013,30(1),22.
58 Weng B, Ding A L, Liu Y Q, et al. Nanoscale,2016,8,3416.
59 Zhou Q, Wang Y F, Wei D P. Optical Instruments,2014,36(5),438(in Chinese).
周全,汪岳峰,魏大鹏.光学仪器,2014,36(5),438.
60 Xu J S, Zhou W C, Luo F, et al. Materials Review A: Review Papers,2014,28(5),46(in Chinese).
徐剑盛,周万城,罗发等.材料导报:综述篇,2014,28(5),46.
61 Nayyeri V, Soleimani M, Ramahi O M. In: Conference Record of the IEEE Trans.Antennas Propag. USA,2013,pp.4176.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[4] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[10] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[11] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[12] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[13] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[14] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[15] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed