Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 234-239    https://doi.org/10.11896/cldb.201902007
  无机非金属及其复合材料 |
表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能
马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清
兰州理工大学材料科学与工程学院,有色金属先进加工与再利用省部共建国家重点实验室,兰州 730050
Adsorption Behavior of Hg(Ⅱ) on the Hydroxyl-Terminated-Polyamidoamine-Grafted Magnetic Graphene Oxide
MA Yingxia, JIN Pengsheng, SHAO Wenjie, KOU Yalan, LA Peiqing
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 4285KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 利用氯乙醇对合成的一系列接枝聚酰胺-胺树状高分子的磁性氧化石墨烯(MGO-PAMAM)进行端基的羟基化修饰,制备接枝端羟基聚酰胺-胺的磁性氧化石墨烯(MGO-PAMAM-OH)。通过透射电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、热重分析仪、振动样品磁强计和X射线光电子能谱仪对样品进行表征,考察了不同因素下MGO-PAMAM-OH对水溶液中Hg(Ⅱ)的吸附性能,并研究了其吸附动力学和等温吸附过程。测试结果表明,成功制备了一系列MGO-PAMAM-OH样品,其中,接枝3.0代端羟基聚酰胺-胺的磁性氧化石墨烯(MGO-PAMAM-OH-G3.0)样品对Hg(Ⅱ)的吸附性能最好,最大吸附量为129.98 mg·g-1。MGO-PAMAM-OH-G3.0对Hg (Ⅱ)的吸附为发生在均质表面的单层化学吸附。此外,在吸附过程中MGO-PAMAM-OH-G3.0将Hg(Ⅱ)部分还原为Hg(Ⅰ)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马应霞
金朋生
邵文杰
寇亚兰
喇培清
关键词:  重金属污染  磁性氧化石墨烯  聚酰胺-胺  氯乙醇  吸附Hg(Ⅱ)    
Abstract: In recent years, heavy metal pollution of industrial wastewater has become a serious threat to human health, living resources and ecological systems even at trace concentrations due to their non-biodegradability, high toxicity and bioaccumulation. Hg(Ⅱ) has been regarded as one of the most toxic and dangerous heavy metal ions, which is seriously harmful to renal and nervous systems. In our previous work, a series of magnetic graphene oxide samples grafted with polyamidoamine dendrimers (MGO-PAMAM) were prepared, which was expected to remove Hg(Ⅱ) from aqueous solution. In this study, the terminal groups of those MGO-PAMAM were modified using chlorohydrin, and consequently the corresponding magnetic graphene oxide grafted with hydroxyl-terminated polyamidoamine dendrimers (MGO-PAMAM-OH) were fabricated. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TG), vibrating sample magnetometer (VSM) and X-ray photoelectron spectroscopy (XPS). The adsorption performances of the samples for Hg(Ⅱ) were studied by batch experiments. The effects of hydroxyl-terminated PAMAM generations, Hg(Ⅱ) initial concentration, solution pH value, and circumstance temperature on the adsorption performances of the samples for Hg(Ⅱ) were investigated in detail. The pseudo-first-order and pseudo-second-order kinetics rate equations were used to analyze the adsorption kinetics. The Langmuir isothermal and Freundlich isothermal adsorption models were employed to study the specific adsorption equilibrium. The results confirmed the successful synthesis of the MGO-PAMAM-OH samples, among which the 3.0-generation-hydroxyl-terminated-polyamidoamine-grafted magnetic graphene oxide (MGO-PAMAM-OH-G3.0) exhibits the most satisfactory adsorption-performance for Hg(Ⅱ), with a maximum adsorption capacity of 129.98 mg·g-1. The adsorption of Hg(Ⅱ) on MGO-PAMAM-OH-G3.0 coincides well with pseudo-second-order kinetics rate equation, and the adsorption equilibrium is in accord with Langmuir isothermal adsorption model, demonstrating a monolayer chemisorption beha-vior of Hg(Ⅱ) on homogeneous surface. In addition, the partial reduction of Hg(Ⅱ) ions to Hg(Ⅰ) by MGO-PAMAM-OH-G3.0 was observed in the adsorption process. Moreover, MGO-PAMAM-OH-G3.0 is superparamagnetic and the saturation magnetization can attain the requirement of solid-liquid separation.
Key words:  heavy metal pollution    magnetic graphene oxide    polyamidoamine    chlorohydrin    Hg(Ⅱ) adsorption
               出版日期:  2019-01-25      发布日期:  2019-01-31
ZTFLH:  O611.4  
  O647.3  
基金资助: 国家自然科学基金(51403091);中国博士后科学基金(2015M572616)
作者简介:  马应霞,兰州理工大学,副教授。mayx2011818@163.com
引用本文:    
马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
MA Yingxia, JIN Pengsheng, SHAO Wenjie, KOU Yalan, LA Peiqing. Adsorption Behavior of Hg(Ⅱ) on the Hydroxyl-Terminated-Polyamidoamine-Grafted Magnetic Graphene Oxide. Materials Reports, 2019, 33(2): 234-239.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902007  或          http://www.mater-rep.com/CN/Y2019/V33/I2/234
1 Zhou Y Y, Tang L, Zeng G M, et al. Sensors and Actuators B,2016,223,280.
2 Ji W B, Yap S H K, Panwar N, et al. Sensors and Actuators B,2016,237,142.
3 Islam M S, Choi W S, Nam B, et al. Chemical Engineering Journal,2017,307,208.
4 Shabani K S, Ardejani F D, Badii K, et al. Arabian Journal of Chemistry,2017,10, S3108.
5 Peng R, Chen X N, Ghosh R. Separation and Purification Technology,2017,174,561.
6 Gopalakrishnan A, Krishnan R, Thangavel S, et al. Journal of Industrial and Engineering Chemistry,2015,30,14.
7 Cui L M, Guo X Y, Wei Q, et al. Journal of Colloid and Interface Science,2015,439,112.
8 Dvornic P R, Tornalia D A. Current Opinion in Colloid & Interface Science,1996,1,221.
9 Xiao W D, Yan B, Zeng H B, et al. Carbon,2016,105,655.
10 Yuan Y, Zhang G H, Li Y, et al. Polymer Chemistry,2013,40,2164.
11 Ma Y X, Xing D, Shao W J, et al. Journal of Colloid and Interface Science,2017,505,352.
12 Nata I F, Salim G W, Lee C K. Journal of Hazardous Materials,2010,183,853.
13 Ge H C, Hua T T. Carbohydrate Polymers,2016,153,246.
14 Gu Y M, Guo Y Z, Wang C Y, et al. Materials Science and Engineering C,2017,70,572.
15 Liu L T, Kong L, Wang H X, et al. Solar Energy Materials & Solar Cells,2016,149,40.
16 Wang B Y, Wu Z L, Qin W D. Sensors and Actuators B,2017,247,774.
17 Wang C C, Ge H Y, Zhao Y Y, et al. Journal of Magnetism and Magnetic Materials,2017,423,421.
18 Danesh N, Hosseini M, Ghorbani M, et al. Synthetic Metals,2016,220,508.
19 Pan S D, Zhang Y, Shen H Y, et al. Chemical Engineering Journal,2012,210,564.
20 Gong X J, Lu W J, Paau M C, et al. Analytia Chimica Acta,2015,86,74.
21 Zhang B H, Yang Q, Li Z H, et al. Colloids and Surfaces A,2015,485,34.
22 Zarghami Z, Akbari A, Latifi A M, et al. Bioresource Technology,2016,205,230.
23 Yen C H, Lien H L, Chung J S, et al. Journal of Hazardous Materials,2017,322,219.
24 Yao X X, Wang H C, Ma Z H, et al. Chinese Journal of Chemical Engineering,2016,24,1348.
25 Wang Y F, Qu R J, Pan F W, et al. Chemical Engineering Journal,2017,317,198.
[1] 毕研刚, 许泽军, 贾欣茹, 李雁, 李武松, 刘聪聪. 树枝状和超支化聚酰胺-胺在我国油田化学的应用进展*[J]. 《材料导报》期刊社, 2017, 31(13): 63-68.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed