Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 797-804    https://doi.org/10.11896/cldb.201905011
  无机非金属及其复合材料 |
类聚合物碳薄膜的制备及其摩擦学研究进展
崔龙辰1,2, 王军军1, 黄伟九1
1 重庆理工大学材料科学与工程学院,重庆 400054;
2 兰州空间技术物理研究所,真空技术与物理国家级重点实验室,兰州 730000
A Survey on Deposition and Tribological Study of Polymer-like Carbon Films
CUI Longchen1,2, WANG Junjun1, HUANG Weijiu1
1 College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054;
2 Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000
下载:  全 文 ( PDF ) ( 2036KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 空间润滑技术是支持航天工程的基础性关键技术,与航天工程的成败直接相关,对有效载荷的使用性能具有重要影响。近年来,我国航天事业的快速发展对空间飞行器提出了超长寿命、超高精度、高稳定度、大转矩、低功耗、低振动、低噪音、小型化、轻量化等新要求。这些新要求将迫使空间润滑由传统润滑向超润滑(摩擦系数低于0.01的润滑状态)的方向发展。类聚合物碳(PLC)薄膜因在高真空下具有超润滑性能而被视为一种潜在的新型空间固体润滑材料。
PLC薄膜是一种具有高氢含量(40%(原子分数,下同)以上)、低硬度(10 GPa以下)、宽光学带隙(1.7~4 eV)等类似碳氢聚合物特征的含氢非晶碳(a-C:H)薄膜。与其他a-C:H薄膜一样,PLC薄膜的制备也是采用基于等离子体放电的真空气相沉积技术,但是PLC薄膜的生长需要在低离子能量条件下进行。因此,PLC薄膜的生长由表面吸附机理主导,这使得PLC薄膜具有较高的氢含量和较大的自由体积。基底偏压是控制离子能量的主要沉积参数:低的基底负偏压对应于低的离子能量。常见的PLC制备技术有:反应磁控溅射、电感耦合等离子体化学气相沉积、微波辅助射频等离子体化学气相沉积等。目前研究者提出了两种摩擦机理来解释PLC薄膜在高真空下的超润滑行为:氢钝化机理和网络结构弛豫机理。这两种机理分别从化学和机械的角度解释PLC薄膜的超润滑行为。氢钝化机理强调氢原子对PLC摩擦界面处碳悬键的钝化作用,该机理已经被许多实验和理论研究验证。网络结构弛豫机理突出自由体积增强PLC网络结构弛豫能力,进而减弱摩擦界面处微凸体间碰撞阻力的作用。尽管有一些实验结果可以佐证网络结构弛豫机理,但是目前还缺少在原子尺度上对该机理的进一步证实和阐述。
本文综述了PLC薄膜的真空沉积技术及其摩擦学性能与机理的研究进展,指出了低离子能量是沉积PLC薄膜的关键,并凸显了“自由体积”在PLC薄膜摩擦磨损中的角色。最后,对未来PLC薄膜的研究发展方向进行了展望,指出PLC薄膜的纳米复合化和多层化有望成为实现长寿命超润滑与环境自适应超润滑的技术突破口。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔龙辰
王军军
黄伟九
关键词:  类聚合物碳薄膜  真空沉积  基底偏压  超润滑  自由体积    
Abstract: As a fundamental key technology supporting the aerospace engineering, space lubrication directly impacts the success or failure of space engineering and determines the performance of payloads. In recently years, the rapid advance of Chinese aerospace industry has put forward new demands for the spacecrafts, including ultra-long service lifetime, ultra-high precision, higher stability, larger torque, lower power consumption, lower vibration and noise, miniaturization, lightweight, etc. These new demands will force the development of space lubrication from traditional lubrication to superlubrication (with the friction coefficient less than 0.01). Due to the super-lubricating property in high vacuum, polymer-like carbon (PLC) films have been regarded as new potential solid lubricants for space applications.
PLC film is a kind of hydrogenated amorphous carbon films with similar characteristics to hydrocarbon polymers, including high hydrogen content (above 40 at%), low hardness (below 10 GPa), and wide optical band gap (1.7—4 eV). Like other a-C:H films, PLC films are also prepared by vacuum vapor deposition technology based on plasma discharge, but the growth of PLC films should be conducted under low ion energy conditions. Hence, the growth of PLC films is dominated by surface adsorption mechanism, which results in higher H content and larger free volume in a PLC film. Substrate bias is a main deposition parameter controlling of ion energy, and a low substrate negative bias corresponds to a low ion energy. Common deposition techniques of PLC films include reactive magnetron sputtering, inductively coupled plasma chemical vapor deposition, microwave assisted RF plasma chemical vapor deposition, etc.Two frictional mechanisms, namely the hydrogen passivation mechanism and the network structure relaxation mechanism, have been proposed explain to the superlubricating behavior of PLC films in high vacuum from the chemical and mechanical perspectives, respectively. The hydrogen passivation mechanism emphasizes the passivation of dangling bonds of carbon atoms at the frictional interface by hydrogen atoms, which has been demonstrated by many experimental and theoretical studies. The network structure relaxation mechanism highlights the role of free volume in improving of the relaxation ability of the PLC network and hence lowering the collision resistance between micro-asperities at the frictional interface. Although some experimental results can support the network structure relaxation mechanism, there is still a lack of further verification and elaboration of the mechanism on atomic scale.
In this article, the progress in vapor deposition of PLC films and their tribological performance and mechanism studies are reviewed. It is pointed out that low ion energy is the key to the deposition of PLC films, and the role of free volume in friction and wear of PLC films is highlighted. Finally, the prospective development of PLC films is proposed, suggesting that preparing nanocomposites and multilayered PLC films are expected to be the technical breakthrough to achieve long-lifetime and environment-adaptive superlubricity.
Key words:  polymer-like carbon film    vacuum deposition    bias voltage    superlubricity    free volume
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TB32  
基金资助: 国家自然科学基金(51605211; 51505050);中国博士后科学基金(2016M601093);重庆市科委基础与前沿研究一般项目(cstc2017jcyjAX0075)
作者简介:  崔龙辰,重庆理工大学材料科学与工程学院讲师。2010年7月本科毕业于济南大学化学化工学院,2015年7月在中国科学院兰州化学物理研究所物理化学专业取得博士学位,2015—2017年在中国空间技术研究院兰州空间技术物理研究所进行博士后研究工作。主要从事非晶碳薄膜的摩擦学研究工作,主持国家自然科学基金青年项目、中国博士后科学基金面上项目、重庆市基础研究与前沿探索项目。黄伟九,教授,博士生导师。国家万人计划科技创新领军人才,新世纪百千万人才工程国家级人选,科技部中青年科技创新领军人才,教育部新世纪优秀人才资助计划和教育部优秀青年教师资助计划人选,享受国务院政府特殊津贴;重庆市材料学学科学术技术带头人,重庆市首批有突出贡献的中青年专家,重庆市首届杰出青年基金获得者,重庆市材料学首席专家工作室领衔专家,重庆市人民政府顾问团成员。huangweijiu@cqut.edu.cn
引用本文:    
崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
CUI Longchen, WANG Junjun, HUANG Weijiu. A Survey on Deposition and Tribological Study of Polymer-like Carbon Films. Materials Reports, 2019, 33(5): 797-804.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905011  或          http://www.mater-rep.com/CN/Y2019/V33/I5/797
1 Qing T, Zhou N N, Zhou G, et al. Lubrication Engineering,2015,40(2),100(in Chinese).
卿涛,周宁宁,周刚,等.润滑与密封,2015,40(2),100.
2 Roberts E W. Journal of Physics D: Applied Physics,2012,45,503001.
3 Li J J, Luo J B. Chinese Journal of Nature,2014,36(4),248(in Chinese).
李津津,雒建斌.自然杂志,2014,36(4),248.
4 Zheng Q S, Ouyang W G, Ma M, et al. Science & Technology Review,2016,34(9),12(in Chinese).
郑泉水,欧阳稳根,马明,等.科技导报,2016,34(9),12.
5 Vanhulsel A, Velasco F, Jacobs R, et al. Tribology International,2007,40,1186.
6 Liu X, Yang J, Hao J, et al. Advanced Materials,2011,24,4614.
7 Cui L, Zhou H, Zhang K, et al. Tribology International,2018,117,107.
8 Robertson J. Materials Science and Engineering R,2002,37,129.
9 Dworschak W, Kleber R, Fuchs A, et al. Thin Solid Films,1990,189,257.
10 Weiler M, Sattel S, Giessen T, et al. Physical Review B,1996,53(3),1594.
11 Robertson J. In: Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, Donnet C, Erdemir A, ed., Springer, New York,2008,pp.620.
12 Li H X, Xu T, Chen J M, et al. Journal of Material Science Engineering,2003,21(6),802(in Chinese).
李红轩,徐洮,陈建敏,等.材料科学与工程学报,2003,21(6),802.
13 Chen X, Kato T, Nosaka M. ACS Applied Materials & Interfaces,2014,6,13389.
14 Li X, Ke P, Zheng H, et al. Applied Surface Science,2013,273,670.
15 Cai J, Yang W, Dai W, et al. China Surface Engineering,2011,24(6),62(in Chinese).
蔡建,杨巍,代伟,等.中国表面工程,2011,24(6),62.
16 Shi B, Meng W J, Evans R D, et al. Surface & Coatings Technology,2005,200,1543.
17 Corbella C, Vives M, Oncins G, et al. Diamond & Related Materials,2004,13,1494.
18 Inaba H, Fujimaki S, Furusawa K, et al. Vacuum,2002,66(3),487.
19 Tomastik C, Lackner J M, Pauschitz A, et al. Solid State Sciences,2016,53,1.
20 Liu X, Yang J, Hao J, et al. Surface & Coatings Technology,2012,206,4119.
21 Liu X, Hao J, Xie Y. Applied Surface Science,2016,379,358.
22 Bouchet-Fabre B, Dixmier J, Heitz T, et al. Journal of Non-Crystalline Solids,2000,266-269,755.
23 Braca E, Kenny J M, Korzec D, et al. Thin Solid Films,2001,394,30.
24 Wazumi K, Koga Y, Tanaka A. Diamond & Related Materials,2003,12,1018.
25 Donnet C, Fontaine J, Le Mogne T, et al. Surface & Coatings Technology,1999,120-121,548.
26 Fontaine J, Donnet C, Grill A, et al. Surface & Coatings Technology,2001,146-147,286.
27 Konishi Y, Konishi I, Sakauchi N, et al. Nuclear Instruments and Met-hods in Physics Research B,1996,118,312.
28 Buijnsters J G, Camero M, Vázquez L, et al. Diamond & Related Mate-rials,2010,19,1093.
29 Chang H B, Xu T, Zhang Z J, et al. Journal of Henan University (Natural Science),2005,35(4),32(in Chinese).
常海波,徐洮,张治军,等.河南大学学报(自然科学版),2005,35(4),32.
30 Erdemir A, Eryilmaz O L, Nilufer I B, et al. Surface & Coatings Techno-logy,2000,133-134,448.
31 Martinu L, Raveh A, Boutard D, et al. Diamond & Related Materials,1993,2,673.
32 Gao F, Erdemir A, Tysoe W T. Tribology Letters,2005,20,221.
33 Cui L, Lu Z, Wang L. Tribology International,2015,82,195.
34 Casiraghi C, Ferrari A C, Robertson J. Physical Review B,2005,72,085401.
35 Buijnsters J G, Gago R, Redondo-Cubero A, et al. Journal of Applied Physics,2012,112,093502.
36 Su Y Y, Zhao L N, Wang J B, et al. China Surface Engineering,2013,26(5),31(in Chinese).
苏永要,赵黎宁,王锦标,等.中国表面工程,2013,26(5),31.
37 Rybachuk M, Hertwig A, Weise M, et al. Applied Physics Letters,2010,96,211909.
38 Bleecker K D, Bogaerts A, Goedheer W. Applied Physics Letters,2006,88,151501.
39 Pei Y T, Chen C Q, Shaha K P, et al. Acta Materialia,2008,56,696.
40 Cui L, Lu Z, Wang L. Carbon,2014,66,259.
41 Cui L, Lu Z, Wang L. ACS Applied Materials & Interfaces,2013,5,5889.
42 Song H, Ji L, Li H, et al. ACS Applied Materials & Interfaces,2016,8,6639.
43 Song H, Chen J, Liu Z, et al. Vacuum,2017,143,36.
44 Erdemir A, Eryilmaz O. Friction,2014,2,140.
45 Fontaine J, Le Mogne T, Loubet J L, et al. Thin Solid Films,2005,482,99.
46 Fontaine J, Loubet J L, Le Mogne T, et al. Tribology Letters,2004,17(4),709.
47 Dag S, Ciraci S. Physical Review B,2004,70,241401(R).
48 Zilibotti G, Righi M C. Langmuir, 2011,27,6862.
49 Chen X, Kato T. Journal of Applied Physics,2014,115,044908.
50 Erdemir A, Donnet C. Journal of Physics D: Applied Physics,2006,39,R311.
51 Jinesh K B, Frenken J W M. Physical Review Letters,2006,96,166103.
52 Huq M Z, Celis J P. Wear,2002,252,375.
53 Wang B Y, Ma C X, Wei L, et al. Unclear Techniques,2000,23(6),392(in Chinese).
王宝义,马创新,魏龙,等.核技术,2000,23(6),392.
54 Thiry D, Vreese A D, Renaux F, et al. Plasma Process and Polymers,2016,13,316.
55 Fan Y W, Qing T. Tribological Engineering of Space Precision Instruments, China Aerospace Publishing House, China,2013(in Chinese).
樊幼温,卿涛.空间精密仪器仪表摩擦学工程,中国宇航出版社,2013.
56 Donnet C, Erdemir A. Surface & Coatings Technology,2004,180-181,76.
[1] 时博, 王金辉, 魏福安. 金属玻璃自由体积理论的研究概述[J]. 材料导报, 2019, 33(7): 1221-1226.
[2] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed