Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 932-935    https://doi.org/10.11896/cldb.201906004
  无机非金属及其复合材料 |
纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性
周宇飞1, 袁一鸣2, 仇中柱1, 乐平3, 李芃4, 姜未汀1, 郑莆燕1, 张涛1, 李春莹5
1 上海电力学院能源与机械工程学院,上海 200090
2 天津理工大学机械工程学院,天津 300384
3 上海虹桥商务区能源服务有限公司,上海 201107
4 同济大学机械工程学院,上海 200092
5 北京师范大学珠海校区不动产学院,珠海 519085
Fabrication and Characteristics of Microencapsulated Phase Change Materials Modified by Graphene Quantum Dots and Aluminum Nanopowders
ZHOU Yufei1, YUAN Yiming2, QIU Zhongzhu1, LE Ping3, LI Peng4, JIANG Weiting1, ZHENG Puyan1, ZHANG Tao1, LI Chunying5
1 College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090
2 College of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384
3 Shanghai Hongqiao Business District Energy Service Co., Ltd, Shanghai 201107
4 College of Mechanical Engineering, Tongji University, Shanghai 200092
5 College of Real Estate, Beijing Normal University, Zhuhai 519085
下载:  全 文 ( PDF ) ( 2556KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作旨在探索石墨烯量子点及纳米铝对改善相变微胶囊热性能、悬浮液物理稳定性等特性的作用。以石蜡为芯材、三聚氰胺-甲醛-尿素树脂为壁材,采用原位聚合法制备了三个相变微胶囊样品,分别为不复合石墨烯量子点及纳米铝的样品、复合1.5%石墨烯量子点的样品、复合1.5%石墨烯量子点及7%(质量分数)纳米铝的样品。通过扫描电镜、粒度仪、热传导系数仪、差示扫描量热仪及静置法分别对相变微胶囊的外观、粒径分布、热导率、热物性以及相变悬浮液物理稳定性进行了表征与分析。结果表明,改性微胶囊成型良好,石墨烯量子点的加入有助于提高微胶囊粒径的均匀性,同时复合石墨烯量子点及纳米铝的微胶囊导热系数提高了254.55%,达到0.78 W/(m·K),包覆率提高至92.65%,且相变悬浮液实现了48 h不分层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周宇飞
袁一鸣
仇中柱
乐平
李芃
姜未汀
郑莆燕
张涛
李春莹
关键词:  石墨烯量子点  相变微胶囊  导热系数  包覆率  物理稳定性    
Abstract: This work aimed to explore the modification effects of graphene quantum dots (GQDs) and aluminum nanopowders on thermal properties and physical stability of microencapsulated phase change materials (MPCM). We used paraffin as core and urea-melamine-formaldehyde polymer as shell to synthesize three samples of MPCM, i.e. blank sample with no GQDs & aluminum nanopowders, MPCM incorporated with 1.5wt% GQDs, MPCM incorporated with 1.5wt% GQDs and 7wt% nano-aluminum, via an in-situ polymerization. The fabricated MPCM samples were characterized by means of SEM, particle size analyzer, hot disk sensor, DSC, etc. with respect to morphology, particle size distribution, thermal conductivity, thermophysical properties and suspension stability. The results showed that the modified MPCMs all exhibited satisfactory spherical shape, and the introduction of GQDs was conducive to a better particle size distribution. The MPCM sample incorporated with both GQDs and aluminum nanopowders was determined to have a superior thermal conductivity (0.78 W/(m·K)) in excess of 254.55% compared to the ordinary MPCM sample, and a higher encapsulation rate (92.65%). Meanwhile, the corresponding suspension can remain unstratified for 48 h.
Key words:  graphene quantum dot    microencapsulated phase change material (MPCM)    thermal conductivity    encapsulation rate    physical stability
                    发布日期:  2019-04-03
ZTFLH:  TK02  
  TB34  
基金资助: 欧盟委员会第七框架协议玛丽居里国际人才引进项目 (FP7-PEOPLE-2011-IIF-298093); 上海自然科学基金 (17ZR1411300); 上海市科委重点科技攻关项目(17DZ1201500)
作者简介:  周宇飞,2018年6月毕业于上海电力学院,获工学硕士学位,主要从事相变储能与可再生能源利用方面的研究。仇中柱,2002年3月毕业于同济大学,获博士学位,2004年3月至今在上海电力学院能源与环境工程学院动力系工作。
引用本文:    
周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
ZHOU Yufei, YUAN Yiming, QIU Zhongzhu, LE Ping, LI Peng, JIANG Weiting, ZHENG Puyan, ZHANG Tao, LI Chunying. Fabrication and Characteristics of Microencapsulated Phase Change Materials Modified by Graphene Quantum Dots and Aluminum Nanopowders. Materials Reports, 2019, 33(6): 932-935.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906004  或          http://www.mater-rep.com/CN/Y2019/V33/I6/932
1 Agyenim F, Hewitt N, Eames P, et al. Renewable and Sustainable Energy Reviews,2010,14(2),615.
2 Li W, Wang J, Wang X, et al. Colloid and Polymer Science,2007,285(15),1691.
3 You M, Zhang X X, Wang J P, et al. Journal of Materials Science,2009,44(12),3141.
4 Yamagishi Y. Aiche Journal,1999,45(4),696.
5 Yu S, Wang X, Wu D. Applied Energy,2014,114(2),632.
6 Zhang H, Wang X, Wu D. Journal of Colloid and Interface Science,2010,343(1),246.
7 Fan L, Khodadadi J M. Renewable and Sustainable Energy Reviews,2011,15(1),24.
8 Li M, Chen M, Wu Z, et al. Energy Conversion and Management,2014,83(7),325.
9 Shi J N, Ger M D, Liu Y M, et al. Carbon,2013,51(1),365.
10 Li J, Huang J W, Li Q B. Functional Material,2014,45(S2),110(in Chinese).
李军, 黄际伟, 李庆彪.功能材料,2014,45 (S2),110.
11 Wang L, Zhan J G, Liu L, et al. Journal of Heat Transfer,2015,137(2),324.
12 Li Y K, Ma S D, Tang G Y.Functional Material,2010,12(41),1813(in Chinese).
黎宇坤, 马素德, 唐国翌.功能材料,2010,12(41),1813.
13 Al-Shannaq R, Farid M, Al-Muhtaseb S, et al. Solar Energy Materials and Solar Cells,2015,132,311.
14 Zhang Z, Zhang J, Chen N, et al. Energy and Environmental Science,2012,5(10),8869.
[1] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[2] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[3] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[4] 王同生, 李亚伟, 桑绍柏, 徐义彪, 王庆虎. 添加热氧化鳞片石墨对高炉炭砖显微结构和性能的影响[J]. 材料导报, 2019, 33(11): 1831-1835.
[5] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[6] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[7] 张新铭, 陈丹阳, 王花. 基于二维Voronoi模型的多孔泡沫金属导热性能模拟研究*[J]. 《材料导报》期刊社, 2017, 31(21): 135-138.
[8] 赵思勰,晏华,汪宏涛,李云涛,余荣升,杨健健. 月桂酸/膨胀珍珠岩复合相变材料的制备与热性能研究*[J]. 材料导报编辑部, 2017, 31(10): 107-111.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed