Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 927-931    https://doi.org/10.11896/cldb.201906003
  无机非金属及其复合材料 |
还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能
王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌
辽宁工程技术大学材料科学与工程学院,阜新 123000
Reduced Graphene Oxide (RGO)/Silicon Network Structured Composites: Preparation and Electrochemical Performance as Anode Materials for Li-ion Batteries
WANG Ming, HUANG Haixu, QI Pengtao, LIU Lei, WANG Xuelei, YANG Shaobin
School of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000
下载:  全 文 ( PDF ) ( 4389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用天然鳞片石墨通过改进的Hummers法制备氧化石墨烯(GO),在碱性条件下通过超声波剥离、静电自组装、磁力搅拌和高温还原的方法合成了还原氧化石墨烯/硅(RGO/Si)复合材料。借助XRD、SEM、TEM、EDX能谱分析和比表面积分析等发现,Si颗粒均匀分布在RGO片层内。在室温下,以该复合材料作为锂离子电池负极,在不同电流密度下研究了其电化学性能。结果表明,RGO/Si复合材料(2∶1)首次循环的放电比容量为1 231 mAh/g,首次库仑效率高达90.9%,在20次循环后,可逆容量保持在452 mAh/g,库仑效率为99.2%。RGO/Si复合材料(1∶1)的RGO片层包覆Si颗粒最紧密,其复合结构最稳定,在高电流密度下容量保持率较高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鸣
黄海旭
齐鹏涛
刘磊
王学雷
杨绍斌
关键词:  锂离子电池  负极材料  还原氧化石墨烯  复合材料  电化学性能  超声波剥离  静电自组装    
Abstract: This contribution presents the preparation and electrochemical performance of a series of reduced graphene oxide (RGO)/silicon network structured composites, which differ in RGO/Si ratio and are expected to serve as anode materials for Li-ion batteries. The preparation of the composites involved a combination of several methods such as ultrasonic exfoliation, electrostatic self-assembly, magnetic stirring and high temperature reduction, within an alkaline circumstance and from the graphene oxide (GO) which had been obtained by a modified Hummers method using natural flake graphite powders. The microstructure and relevant characteristics of the prepared RGO/Si composites was characterized and analyzed by means of XRD, SEM, TEM, energy dispersive X-ray microanalysis (EDX), and specific surface area analysis. And the electrochemical performance test was conducted under room temperature and various current densities. The experimental results showed that the prepared RGO/Si composites have a network structure, in which silicon microparticles distribute uniformly in the RGO networks. Moreover, the RGO/Si composites with RGO-to-Si ratios of 2∶1 and 1∶1 displayed relatively satisfactory electrochemical performances compared with the samples with RGO-to-Si ratios of 1∶4, 1∶2 and 4∶1. The RGO/Si (2∶1) composite has a specific capacity of 1 231 mAh/g and a coulomb efficiency of 90.9% for the first cycle, as well as a reversible capacity retaining above 452 mAh/g and a Coulombic efficiency of 99.2% within 20 cycles. The RGO/Si (1∶1) composite was observed to have the most compact RGO lamellar coated onto Si microparticles and the most stable network structure, so that it exhibited high capacity retention abilities at high current density.
Key words:  Li ion battery    anode materials    reduced graphene oxide    composites    electrochemical performance    ultrasonic exfoliation    electrostatic self-assembly
                    发布日期:  2019-04-03
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51774175);辽宁省自然科学基金重点项目材料联合基金(20180510034)
作者简介:  王鸣,辽宁工程技术大学材料科学与工程学院副教授、硕士生导师。
引用本文:    
王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
WANG Ming, HUANG Haixu, QI Pengtao, LIU Lei, WANG Xuelei, YANG Shaobin. Reduced Graphene Oxide (RGO)/Silicon Network Structured Composites: Preparation and Electrochemical Performance as Anode Materials for Li-ion Batteries. Materials Reports, 2019, 33(6): 927-931.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906003  或          http://www.mater-rep.com/CN/Y2019/V33/I6/927
1 Li H, Wang Z, Chen L, et al. Advanced Materials,2009,21(45),4593.
2 Ellis B, Subramanyaherle P, Rho Y H, et al. Faraday Discuss,2007,23,119.
3 Yuan L X, Wang Z H, Zhang W X, et al. Energy & Environmental Science,2011,4(2),269.
4 Yu X L, Yang J, Feng X J, et al. Journal of Inorganic Materials,2013,28(9),937(in Chinese).
于晓磊, 杨军, 冯雪娇,等.无机材料学报,2013,28(9),937.
5 Wang B F, Yang J, Xie J Y, et al. Acta Chimica Sinica,2003,61(10),1572(in Chinese).
王保峰, 杨军, 解晶莹,等.化学学报,2003,61(10),1572.
6 Flandrois S, Simon B. Carbon,1999,37(2),165.
7 Gao P, Fu J, Yang J, et al. Physical Chemistry Chemical Physics,2009,11(47),11101.
8 Zhou S, Liu X H, Wang D W. Nano Letters,2010,10,860.
9 Choi N S, Yao Y, Cui Y. et al. Journal of Materials Chemistry,2011,21,9825.
10 Zhao X, Hayner C M, Kung M C, et al. Advanced Energy Materials,2011,1,1079.
11 Zhou X, Wan L J, GUO Y G. Small,2013,9(16),2684.
12 Martin C, Crosnier O, Retoux R, et al. Advanced Functional Materials,2011,21(18),3524.
13 Ji L, Zhang X. Energy & Environmental Science,2010,3(1),124.
14 Chen J H, Jang C, Xiao S, et al. Nature Nanotechnology,2008,3(4),206.
15 Balandin A A, Ghosh S, Bao W, et al. Nano Letters,2008,8(3),902.
16 Nair R R, Blake P, Grigorenko A N, et al. Science,2008,320(5881),1308.
17 Evannoff K, Magasinski A, Yang J, et al. Advanced Energy Materials,2011,1(4),495.
18 Lee C, Wei X, Kysar J W, et al. Science,2008,321(5887), 385.
19 Park S, Ruoff R S. Nature Nanotechnology,2009,4(4),217.
20 Lu J, Wang J C, Zhao M F, et al. Materials Review:Research Papers,2014,28(11),28(in Chinese).
陆军,王建朝,赵美峰,等.材料导报:研究篇,2014,28(11),28.
21 Xie P, Yu J, Qin J, et al. Guizhou Chemical Engineering,2010,35(4),20(in Chinese).
谢普, 于杰, 秦军,等.贵州化工,2010,35(4),20.
22 Ma W S, Zhou J W, Cheng S X. Journal of Chemical Engineering of Chinese Universities,2010,24(4),719(in Chinese).
马文石, 周俊文, 程顺喜.高校化学工程学报,2010,24(4),719.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[11] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[12] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[13] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[14] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[15] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed