Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1371-1375    https://doi.org/10.11896/cldb.17120010
  金属与金属基复合材料 |
TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响
王应武1,2, 左孝青1, 冉松江1, 孔德昊1
1 昆明理工大学材料科学与工程学院,昆明 650093
2 云南省科学技术院,昆明 650000
Effects of TiB2 Content and T6 Heat Treatment on Microstructure and Hardness of In-situ TiB2/ZL111 Composites
WANG Yingwu1,2, ZUO Xiaoqing1, RAN Songjiang1, KONG Dehao1
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2 Yunnan Provincial Academy of Science and Technology, Kunming 650000
下载:  全 文 ( PDF ) ( 4712KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用原位合成法制备了TiB2/ZL111复合材料,并对铸态及T6态TiB2/ZL111复合材料的显微组织及硬度进行了研究。结果表明:显微组织方面,铸态TiB2/ZL111复合材料主要由α-Al、共晶Si和TiB2组成,TiB2颗粒平均尺寸为1 μm,呈六边形或卵圆形分布于α-Al晶界处;TiB2有效细化了ZL111 的α-Al晶粒,使长条状共晶Si向等轴状转变;T6热处理使共晶Si进一步演变为近球状,并有效改善了TiB2的团聚现象。硬度方面,TiB2含量越高,铸态TiB2/ZL111复合材料的硬度越高,铸态10%TiB2/ZL111(质量分数)复合材料的维氏硬度(120.13Hv)比铸态ZL111合金(96.63Hv)提高了24.32%;T6热处理使ZL111合金及TiB2/ZL111复合材料的硬度进一步提高,但硬度提高率随TiB2含量的增大而减小,TiB2消弱了T6热处理的时效硬化作用,归因于TiB2颗粒抑制了Al2Cu相的析出。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王应武
左孝青
冉松江
孔德昊
关键词:  TiB2/ZL111复合材料  原位合成  T6热处理  显微组织  硬度    
Abstract: TiB2/ZL111 composites were prepared by in-situ synthesis method, and their microstructure and hardness in both as-cast and T6 heat treatment states were systematically investigated. The results of microstructure observation show that the phase components of the as-cast TiB2/ZL111 composites are mainly composed of α-Al, eutectic Si and TiB2. The TiB2 particles are hexagonal or oval in shape, with an average crystalline grain size less than 1 μm, and distribute at the boundary of α-Al grains. The addition of TiB2 can effectively refine the α-Al grains in ZL111 alloy, and change the morphology of eutectic Si form elongated shape to equiaxed shape. T6 heat treatment can further promote the morphological transformation of eutectic Si from equiaxed shape into subglobose shape, and effectively improve the TiB2 agglomeration phenomenon. The results of hardness measurement show that the higher the TiB2 content, the higher the hardness of the TiB2/ZL111 composites in the as-cast state. The hardness of 10wt% TiB2/ZL111 composites (120.13Hv) rises by 24.32%, compared with the hardness of as-cast ZL111 alloy (96.63 Hv). The hardness of ZL111 alloy and TiB2/ZL111 composites can be further improved by taking T6 heat treatment. However, the increase rate of hardness decreases with the increasing of TiB2 content. This is attributed to the fact that TiB2 inhibit the precipitation of Al2Cu during aging process that can result in reducing the aging hardening effect of T6 heat treatment.
Key words:  TiB2/ZL111 composite    in-situ    T6 heat treatment    microstructure    hardness
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TB331  
基金资助: 国家自然科学基金(51164019;51741103;51861020);云南省科技计划项目(2018ZE018;2018BA072)
通讯作者:  zxqdzhhm@163.com   
作者简介:  王应武,博士研究生,高级工程师,2011年6月毕业于昆明理工大学,获得工学硕士学位,2013年至今在昆明理工大学攻读博士学位,主要从事铝基复合材料、泡沫铝等研究。左孝青,昆明理工大学,教授,博士,博士研究生导师,昆明理工大学泡沫金属材料创新团队首席教授,主要从事泡沫及多孔金属材料、金属基复合材料及有色金属材料研究,发表论文112篇,SCI、EI收录40余篇,授权国家发明专利30余项。
引用本文:    
王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
WANG Yingwu, ZUO Xiaoqing, RAN Songjiang, KONG Dehao. Effects of TiB2 Content and T6 Heat Treatment on Microstructure and Hardness of In-situ TiB2/ZL111 Composites. Materials Reports, 2019, 33(8): 1371-1375.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120010  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1371
1 Rajan T P D, Pillai R M, Pai B C. Journal of Materials Science, 1998, 33, 3491.
2 Mazahery A, Shabani M O. Journal of Materials Engineering and Performance, 2012, 21, 247.
3 Martin K J, Madan A, Hoffman D, et al. Journal of Vaccum Science & Technology A, 2005, 23, 90.
4 Ramesh C S, Ahamed A, Channabasappa B H, et al. Materials & Design, 2010, 31(4), 2230.
5 Le Y K , Chen D , Zhang Y J, et al. Special Casting & Nonferrous Alloys, 2006, 26 (8), 518(in Chinese).
乐永康, 陈东, 张亦杰,等.特种铸造及有色合金, 2006, 26(8), 518.
6 Le Y K, Zhang Y J, Chen D , et al. Rare Metal Materials and Enginee-ring, 2006, 35(10), 1635(in Chinese).
乐永康, 张亦杰, 陈东, 等.稀有金属材料与工程, 2006, 35(10), 1635.
7 Senthil P, Selvaraj T, Sivaprasad K. The International Journal of Advanced Manufacturing Technology, 2013, 67(5-8), 1589.
8 Sharma S C, Girish B M, Kamath R, et al. Journal of Materials Engineering and Performance, 1999, 8(3), 309.
9 Lakshmi S, Lu L, Gupta M. Journal of Materials Processing Technology, 1998, 73, 160.
10 Rajasekaran N R, Sampath V. Journal of Minerals & Materials Characte-rization & Engineering, 2011, 10(6),527.
11 Rajan H B M, Ramabalan S, Dinaharan I, et al. Archives of Civil and Mechanical Engineering, 2014, 14 ,72.
12 Naga K N, Sivaprasad K. Transactions of the Indian Institute of Metals, 2011, 64(1 & 2), 63.
13 Wood J V, Davies P, Kellie J L F. Materials Science and Technology, 1993, 9, 833.
14 Mandal A, Chakraborty M, Murty B S. Materials Science and Engineering A, 2008, 489, 220.
15 Huang M H, Li X F, Yi H Z, et al. Journal of Alloys and Compounds, 2005, 389, 275.
16 Yi H Z, Ma N H, Zhang Y J, et al. Scripta Materialia, 2006, 54, 1093.
17 Yi H Z, Ma N H, Li X F, et al. Materials Science and Engineering A, 2006, 419, 12.
18 Han Y F, Liu X F, Bian X F. Composites Part A, 2002, 33, 439.
19 Kumar S, Chakraborty M, Subramanya Sarma V, et al. Wear, 2008, 265, 134.
20 Zhang Y J, Wang M L, Li X F, et al. China Foundry, 2015, 12(4), 251.
21 Chen F, Chen Z N, Mao F, et al. Materials Science & Engineering A, 2015, A625, 357.
22 Chen Z N, Wang T M, Zheng Y P, et al. Materials Science & Enginee-ring A, 2014, A605, 301.
23 Wang T M, Chen Z N, Zheng Y P, et al. Materials Science & Enginee-ring A, 2014, A605 ,22.
24 Paul L S, Lars A, Arne K D. Scripta Materialia, 2006, 54, 677.
25 Liu H M, He J P, Yang B , et al. Acta Metallurgica Sinica, 2006, 42(2), 158(in Chinese).
刘慧敏, 何建平, 杨滨, 等.金属学报, 2006, 42(2), 158.
26 Wu X F. Formation mechanism of the “twin peaks” phenomenon by aging strengthening in Al-Si-Cu-Mg alloy. Master’s Thesis, Shenyang University of Technology, China, 2013(in Chinese).
吴雪丰. Al-Si-Cu-Mg合金时效强化“双峰”现象形成机理. 硕士学位论文, 沈阳工业大学, 2013.
27 Nie S N. Reasearch on the aging precipitation behavior of casting Al-Si-Cu-Mg alloy. Master’s Thesis, Shenyang University of Technology, China, 2015(in Chinese).
聂赛男. 铸造Al-Si-Cu-Mg合金时效析出行为的研究. 硕士学位论文, 沈阳工业大学, 2015.
28 Watson I G, Forster M F, Lee P D, et al. Composites:Part A, 2005, 36, 1177.
29 Lü L, Lai M O, Su Y, et al. Scripta Materialia, 2001, 45, 1017.
30 Forster M F. Centrifugal casting of an Al-TiB2 composite, Master’s Thesis, Imperial College London, UK, 2002.
31 Li P T, Li Y G, Wu Y Y, et al. Materials Science and Engineering A, 2012, 546, 46.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[3] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[4] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[5] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[6] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[7] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[8] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[9] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[10] 曹雷刚, 王晓荷, 崔岩, 杨越, 刘园. 碳化硼粒度对无压浸渗高体分铝基复合材料微观组织和力学性能的影响[J]. 材料导报, 2019, 33(20): 3472-3476.
[11] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[12] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[13] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[14] 刘晗, 薛松柏, 王刘珏, 林尧伟, 陈宏能. 金基中低温钎料的研究现状与展望[J]. 材料导报, 2019, 33(19): 3189-3195.
[15] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed