Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3189-3195    https://doi.org/10.11896/cldb.18090164
  材料与可持续发展(二)—材料绿色制造与加工* |
金基中低温钎料的研究现状与展望
刘晗1, 薛松柏1, 王刘珏1, 林尧伟2, 陈宏能2
1 南京航空航天大学材料科学与技术学院,南京 210016;
2 汕尾市索思电子封装材料有限公司,汕尾 516600
Research Status and Prospect of Au-based Medium-Low TemperatureFiller Metals
LIU Han1, XUE Songbai1, WANG Liujue1, LIN Yaowei2, CHEN Hongneng2
1 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;
2 Shanwei Source Advanced Materials Corporation, Shanwei 516600
下载:  全 文 ( PDF ) ( 1827KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电子封装技术的发展以及无铅化进程的推进,目前已开发了诸多无铅钎料合金体系用于代替Sn-Pb钎料,但在熔化温度为280~400 ℃之间的无铅钎料封装领域,价格高昂的Au-Sn、Au-Si、Au-Ge等金基低温钎料是唯一可代替高温Sn-Pb钎料的合金体系,并凭借其优良的钎焊性能被广泛应用于电子封装等领域。然而,随着电子器件高集成度、高功率化发展,熔点低于400 ℃的金基低温钎料已不能完全满足封装要求,亟需开发熔点在400~600 ℃之间的中温钎料。目前,熔化温度在280~600 ℃之间的金基钎料合金体系是高温电子封装的主要选择,甚至部分钎料是唯一的选择。
金基钎料虽然具有优良的电导率、热导率、耐腐蚀性能、力学性能和高可靠性等优点,但由于组成相具有高脆性而难以加工成型,加工难度大、成品率低、产品性能差等严重影响了钎料的使用。此外,金基钎料中Au含量普遍较高,使用成本高昂。因此,一直以来除了研究金基钎料的加工工艺外,研究者们在采用合金元素替代Au元素以及开发新的金基合金体系等方面进行了大量探索。
针对金基钎料高脆性、难加工的特点,研究人员开发了铸造拉拔轧制法、叠层冷轧法、甩带快速凝固法与电镀沉积法等制备方法,实现了厚度为0.1 mm以下箔材的生产。合金元素对金基钎料的影响研究表明,低熔点合金元素(如Sn、Sb、In等)能降低Au-Ge钎料的熔点,少量Sb的添加还能增强Au-Ge钎料的延展性能,Sb与Sn还能抑制钎焊界面反应层的过度生长。在诸多的金基合金体系中,Au-Ag-Si、Au-Ag-Ge、Au-In、Au-Ga等合金体系作为潜在的新型金基中温钎料得到了关注。这些钎料合金因具有高脆性而无法采用常规方法进行加工成型;同时也因具有优异的润湿铺展性能和良好的力学性能而易于推广应用。
本文归纳了金基中低温钎料的研究现状,对金基中低温钎料的性能、特点、应用领域以及合金元素影响等进行了介绍,概述了高脆性中低温金基钎料的各种加工方法及其优缺点,重点分析并比较了Au-Ag系、Au-In系与Au-Ga系中温钎料的性能特征。最后,在评述和归纳现有文献的基础上,对金基中低温钎料的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晗
薛松柏
王刘珏
林尧伟
陈宏能
关键词:  金基钎料  中温钎料  显微组织  润湿性能  力学性能    
Abstract: As fast development of electronic packaging technology and the inevitable trend of lead-free soldering, a number of alloys have been proposed as alternative Pb-free solders, but in the field of microelectronic and optoelectronic packages, high priced Au-based solder (such as Au-Sn, Au-Si, Au-Ge) is considered as the best one to substitute for high-Pb solders due to their excellent comprehensive properties. However, with the development of high-integration and high-power electronic devices, Au-based low-temperature solders with melting point below 400 ℃ can not fully meet the packaging requirements. It is urgent to develop mid-temperature filler metals with melting point between 400 ℃ and 600 ℃. At pre-sent, among all filler metals with melting points in the range of 280—600 ℃, Au-based alloy systems are the main choice for high-temperature bonding applications in the electronic packaging, or even the only choice.
Au-based filler metals have superior resistance to corrosion, high electrical and thermal conductivity, excellent mechanical strength and high reliability, while they are difficult to be processed due to their high brittleness. Processing difficulty, low yield and poor product performance seriously affect the application of Au-based solders. What’s more, the Au content in Au-based alloys is generally so high that the use-cost of Au-based solders is high. Therefore, researchers not only studied the processing technology of brittle solders, but also made a lot of explorations in replacing Au with alloying elements and developing new Au-based alloy systems.
The casting drawing and rolling method, laminate-rolling process, roll rapid solidification method and the electroplating deposition method were developed to solve the processing problem caused by the high brittleness of the Au-based alloys. Alloy foils with thickness less than 0.1 mm can be worked out by means of using these processes. The effect of alloying elements on Au-based solders shows that low melting point alloying elements (e.g. Sn, Sb, In) can reduce the melting point of Au-Ge solder, and the ductility of Au-Ge solder is enhanced by adding a small amount of Sb. Sb and Sn can also inhibit excessive growth of interfacial reaction layer. Among many gold-based alloy systems, alloys like Au-Ag-Si, Au-Ag-Ge, Au-In, and Au-Ga have been proposed as medium-temperature solders. Although these alloys are brittle and cannot be processed by conventional methods, they have great potential for being widely used in advanced electronic packaging owing to their excellent wettability and good mechanical properties.
This review offers a retrospection of the research efforts with respect to Au-based medium-low temperature filler metals. The properties, characteristics, application fields and influence of alloying elements of Au-based medium-low temperature filler metals are introduced. The various processing methods and their advantages and disadvantages of high-brittle Au-based medium-low temperature filler metals are summarized. The performance and characteristics of Au-Ag, Au-In and Au-Ga medium-temperature filler metals are analyzed and compared emphatically. Based on the existing literature, the development direction of Au-based medium-low temperature filler metals is predicted.
Key words:  Au-based solders    mid-temperature filler metals    microstructure    wettability    mechanical property
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TG425  
基金资助: 国家自然科学基金(51675269);江苏高校优势学科建设工程资助项目
作者简介:  刘晗,2015年6月毕业于南京航空航天大学,获得工学学士学位。现为南京航空航天大学材料科学与技术学院博士研究生,在薛松柏教授的指导下进行研究。目前主要研究领域为先进封装材料。薛松柏,南京航空航天大学材料科学与技术学院二级教授、研究员、博士生导师,享受政府特殊津贴专家。长期以来专注于焊接材料及焊接工艺的研究,制定五项国家标准、五项机械工业部行业标准并发布实施;主持完成了三十多项国家、部、市课题的研究,共取得主要科研成果三十余项。xuesb@nuaa.edu.cn
引用本文:    
刘晗, 薛松柏, 王刘珏, 林尧伟, 陈宏能. 金基中低温钎料的研究现状与展望[J]. 材料导报, 2019, 33(19): 3189-3195.
LIU Han, XUE Songbai, WANG Liujue, LIN Yaowei, CHEN Hongneng. Research Status and Prospect of Au-based Medium-Low TemperatureFiller Metals. Materials Reports, 2019, 33(19): 3189-3195.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090164  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3189
1 Fang J H, Xie M, Zhang J M, et al. The Chinese Journal of Nonferrous Metals,2017,27(8),1659(in Chinese).方继恒,谢明,张吉明,等.中国有色金属学报,2017,27(8),1659.2 Zhang G L, Xu K, Zhao M, et al. Precious Metals,2014,35(3),71(in Chinese).张利广,许昆,赵明,等.贵金属,2014,35(3),71.3 Li C Y, Wang X T, Yuan W X. Journal of University of Science and Technology Beijing,2008,30(12),1402(in Chinese).李春元,王西涛,袁文霞.北京科技大学学报,2008,30(12),1402.4 Vianco P T, Grant R P, Rejent J A, et al. Journal of Surface Mount Technology,2013,26,1.5 Chen D Q, Li W, Luo X M, et al. Precious Metals,2009,30(3),62(in Chinese).陈登权,李伟,罗锡明,等.贵金属,2009,30(3),62.6 Wang J, Liu Y J, Tang C Y, et al. Thermochimica Acta,2011,512(1-2),240.7 Liu H S, Wang J, Du Y, et al. Zeitschrift Für Metallkunde,2004,95(1),45.8 Liu H S, Cui Y, Ishida K, et al. Calphad,2003,27(1),27.9 Liu H S, Ishida K, Jin Z P, et al. Intermetallics,2003,11(10),987.10 Wang J, Liu Y J, Liu L B, et al. Calphad,2011,35(2),242.11 Liu J, Guo C, Li C, et al. Journal of Alloys & Compounds,2010,508(1),62.12 Okamoto H. Journal of Phase Equilibria & Diffusion,2013,34(2),174.13 Awe O E, Oshakuade O M. Physica B Condensed Matter,2017,507,84.14 Wang J, Liu H S, Liu L B, et al. Calphad,2007,31(4),545.15 Wang J, Liu H S, Liu L B, et al. Transactions of Nonferrous Metals Society of China,2007,17(6),1405.16 Zoro E, Servant C, Legendre B. Journal of Phase Equilibria & Diffusion,2007,28(3),250.17 Zoro E, Servant C, Legendre B. Calphad,2007,31(1),89.18 Wang J, Meng F G, Liu H S, et al. Journal of Electronic Materials,2007,36(5),568.19 Wang J, Leinenbach C, Roth M. Journal of Alloys & Compounds,2009,481(1),830.20 Wang J, Leinenbach C, Roth M. Journal of Alloys & Compounds,2009,485(1),577.21 Liu H S, Liu C L, Ishida K, et al. Journal of Electronic Materials,2003,32(11),1290.22 Hassam S, Boa D, Rogez J. Journal of Alloys & Compounds,2012,520,65.23 Gierlotka W. Journal of Alloys & Compounds,2013,579,533.24 Liu H S, Liu C L, Wang C, et al. Journal of Electronic Materials,2003,32(2),81.25 Meng F G, Liu H S, Liu L B, et al. Journal of Alloys & Compounds,2007,431(1),292.26 Wang J, Liu Y J, Liu L B, et al. Journal of Alloys & Compounds,2011,509(6),3057.27 Hindler M, Guo Z, Mikula A. Journal of Chemical Thermodynamics,2012,55(6),102.28 Peng J, Wang R C, Liu H S, et al. Journal of Materials Science Materials in Electronics,2018,29(1),313.29 Zhu Z X, Li C C, Liao L L, et al. Journal of Alloys & Compounds,2016,671,340.30 Elmer J W, Mulay R P. Scripta Materialia,2016,120,14.31 Lee B S, Ko Y H, Bang J H, et al. Microelectronics Reliability,2017,71,119.32 Peng J, Wang R C, Wang M, et al. Journal of Electronic Materials,2017,46(4),1.33 Fan L X, Jing H Y, Xu L Y. Electric Welding Machine,2006,36(11),14(in Chinese).范琳霞,荆洪阳,徐连勇.电焊机,2006,36(11),14.34 Wei X F. Preparation and related fundamental research on AuSn20 eutectic solder for electronic packaging. Ph.D. Thesis, Central South University, China,2014(in Chinese).韦小凤.电子封装用AuSn20共晶钎料的制备及其相关基础研究.博士学位论文,中南大学,2014.35 Zhang W. Study on hot compression deformation behavior and processing performance of Au-20Sn eutectic alloy. Master’s Thesis, Yunnan University, China,2014(in Chinese).张伟.金锡共晶合金热压缩变形行为和加工性能的研究.硕士学位论文,云南大学,2014.36 Watanabe Osamu. Japan Patent, JPH05177380A,1993.37 Komata Masashi. Japan Patent, JPH0215897A,1990.38 Ken-ichi Miyazaki. U.S. Patent, US7048813,2006.39 Kim Moon Chul. Korea Patent, KR1020040107898,2006.40 Kim Moon Chul. Korea Patent, KR1020050098633,2006.41 Yamamoto Hironobu. Japan Patent, JPS58100992A,1983.42 Yamamoto Hironobu. Japan Patent, JPS58100993A,1983.43 Coad B C. U.S. Patent, US3181935,1965.44 刘泽光,杨富陶,顾开源.中国专利,CN1066411,1992.45 Liu R, Wang R C, Wei X F, et al. Journal of Central South University (Science and Technology),2015(11),4021(in Chinese).刘锐,王日初,韦小凤,等.中南大学学报(自然科学版),2015(11),4021.46 王檬,陈一胜,朱志云,等.中国专利,CN103290251A,2013.47 Kaneshiro Yoshio. Japan Patent, JP2000026989A,2000.48 Ivey D G, Sun W. U.S. Patent, US6245208,2001.49 Lang F Q, Yamaguchi H, Nakagawa H, et al. Journal of Materials Science & Technology,2015,31(5),445.50 Bushra S. Investigation of wafer level Au-Si eutectic bonding of shape memory alloy (SMA) with silicon. Master’s Thesis, KTH Royal Institute of Technology, Sweden,2011.51 Hu Y F, Li X X, Yu S L. Electric Welding Machine,2008,38(9),57(in Chinese).胡永芳,李孝轩,禹胜林.电焊机,2008,38(9),57.52 Xie H C, Yang A H, Zhuang D X, et al. Precious Metals,2011,32(1),35(in Chinese).谢宏潮,阳岸恒,庄滇湘,等.贵金属,2011,32(1),35.53 Chidambaram V, Shan G. Journal of Electronic Materials,2012,41(8),2107.54 Chidambaram V, Yeung H B, Shan G. In: 19th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits. Singapore,2012,pp.1.55 Leinenbach C, Valenza F, Giuranno D, et al. Journal of Electronic Materials,2011,40(7),1533.56 Chidambaram V, Hald J, Hattel J. Journal of Alloys & Compounds,2010,490(1),170.57 Jin S, Valenza F, Novakovic R, et al. Journal of Electronic Materials,2013,42(6),1024.58 Weyrich N, Jin S, Duarte L I, et al. Journal of Materials Engineering & Performance,2014,23(5),1585.59 Chidambaram V, Rong E P J, Lip G C, et al. In: 2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013). Singapore,2013,pp.202.60 Chidambaram V, Hald J, Ambat R, et al. JOM,2009,61(6),59.61 Reeve H T. U.S. Patent, US2503564,1950.62 Mo W J, Wang Z F, Wang H S, et al. Precious Metals,2004,25(4),45(in Chinese).莫文剑,王志法,王海山,等.贵金属,2004,25(4),45.63 Cui D T, Wang Z, Wu H, et al. Rare Metal Materials & Engineering,2008,37(4),690.64 Cui D T. Preparation and related fundamental research on mid-temperature eutectic solder ribbon. Ph.D. Thesis, Central South University, China,2008(in Chinese).崔大田.中温共晶钎料薄带制备及其相关基础研究.博士学位论文,中南大学,2008.65 Cui D T, Wang Z F, Hu Z J, et al. Rare Metal Materials & Engineering,2012,41(3),442(in Chinese).崔大田,王志法,胡忠举,等.稀有金属材料与工程,2012,41(3),442.66 Cui D T, Wang Z F, Zhou J, et al. The Chinese Journal of Nonferrous Metals,2007,17(9),1501(in Chinese).崔大田,王志法,周俊,等.中国有色金属学报,2007,17(9),1501.67 Zwingmann G. Gold Bulletin,1978,11(1),9.68 Cui D T, Wang Z F, Mo W J. Journal of Central South University (Scie-nce and Technology),2007,38(1),36(in Chinese).崔大田,王志法,莫文剑,等.中南大学学报(自然科学版),2007,38(1),36.69 Sohn Y C, Wang Q, Ham S J, et al. In: 2007 Proceedings 57th Electronic Components and Technology Conference. Reno,2007,pp,633.70 Grummel B J, Shen Z J, Mustain H A, et al. IEEE Transactions on Components Packaging & Manufacturing Technology,2013,3(5),716.71 Grummel B J, Mustain H A, Shen Z J, et al. In: 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs. San Diego,2011,pp.260.72 Okamoto H. Journal of Phase Equilibria and Diffusion,2004,25(2),197.73 Liu Z G, Chen D Q, Li W, et al. Precious Metals,2010,31(2),41(in Chinese).刘泽光,陈登权,李伟,等.贵金属,2010,31(2),41.74 Harman J G G. U.S. Patent, US3141238,1964.75 Taniguchi H, Shimada T, Miyazaki K. U.S. Patent, US9604317,2017.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed