Please wait a minute...
材料导报  2019, Vol. 33 Issue (20): 3472-3476    https://doi.org/10.11896/cldb.18090005
  金属及金属基复合材料 |
碳化硼粒度对无压浸渗高体分铝基复合材料微观组织和力学性能的影响
曹雷刚, 王晓荷, 崔岩, 杨越, 刘园
北方工业大学机械与材料工程学院,北京 100144
Effect of B4C Particle Size on the Microstructure and Mechanical Properties of High Volume Fraction Aluminum Matrix Composite Fabricated by Pressureless Infiltration
CAO Leigang, WANG Xiaohe, CUI Yan, YANG Yue, LIU Yuan
School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144
下载:  全 文 ( PDF ) ( 2988KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 选用平均粒度为2 μm和38 μm的碳化硼颗粒,分别制备100%(质量分数)38 μm、20%(质量分数)2.0 μm+80%(质量分数)38 μm和100%(质量分数)2.0 μm的碳化硼预制体,以无压浸渗法制备三种高体分B4C/Al复合材料,研究碳化硼颗粒对复合材料的物相组成、微观组织和力学性能的影响。结果表明,三种复合材料均由Al、B4C、Al3BC、AlB2和富Fe-Mn相组成。当增强相完全为大颗粒碳化硼时,复合材料内部碳化硼均匀分布于铝基体,此时界面反应程度较弱,界面产物AlB2和Al3BC呈随机分布的特征,且复合材料的硬度和抗弯强度分别为23.2HRC和406 MPa。由于小颗粒碳化硼具有较高的比表面积,其与熔融状态的铝合金(以下简称“熔铝”)实际接触面积较大,使得两者之间发生剧烈的界面反应。因此,当增强相中引入20%(质量分数)小颗粒碳化硼时,复合材料内铝基体消耗量增加,大颗粒碳化硼仍近乎均匀分布,颗粒间组织表现为剩余的细颗粒B4C和铝均匀分布于界面产物内。由于初始增强相体积分数和陶瓷相界面产物含量均增加,复合材料的硬度提升至40.02HRC,抗弯强度略有提升(425 MPa),但应变量有所降低。当增强相完全为小颗粒碳化硼时,剧烈的界面反应大量消耗铝合金基体,使得Al3BC和AlB2成为B4C/Al复合材料的主要物相,微观组织呈现为剩余的小颗粒B4C和铝均匀分布于陶瓷相基体内,复合材料硬度提升至56.8HRC。然而,由于小颗粒碳化硼在高温烧结过程中存在封闭微孔缺陷且这些缺陷将保留于复合材料内,使得复合材料的弯曲强度降低至248 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹雷刚
王晓荷
崔岩
杨越
刘园
关键词:  碳化硼  复合材料  无压浸渗  力学性能  硬度    
Abstract: The boron carbide (B4C) particles with average particle size of 2.0 μm and 38 μm were used to prepare B4C preforms with particle-size distributions being 100% 38 μm, 20% 2.0 μm+80% 38 μm and 100% 2.0 μm, respectively. Correspondingly, three kinds of high volume fraction B4C/Al composites were prepared by pressureless infiltration and the effects of particle size of boron carbide on the phase constitution, microstructure and mechanical properties of the composites were investigated.The results show that all of the B4C/6061Al composites present the same phase constitution, including B4C, Al, Al3BC, AlB2 and Fe-Mn-rich phases. When the reinforcing phase is completely large particle, B4C particles are uniformly distributed in the composite. The degree of the interface reaction is weak, with the random distribution of the interface pro-ducts, AlB2 and Al3BC. The hardness and flexural strength of the corresponding composite are 23.2HRC and 406 MPa, respectively. B4C fine particle possesses higher specific surface area than that of the large particle and, therefore, the actual contact area between B4C fine particles and the molten aluminum alloy is larger, resulting in the severe interfacial reaction. With 20% of B4C fine particles being involved, the consumption of the aluminum matrix increases in the composite, wherein B4C large particle also present a uniform distribution characteristic. Within the region between the large particles, the remaining fine particles are uniformly distributed in the interface products. Due to the increasing fraction of the initial B4C particles and the interfacial products, the hardness of the composite increases to 40.02HRC, and the flexural strength increases slightly to 425 MPa with a decreasing strain. When the reinforcing phase is completely fine particles, aluminum is consumed in a large amount by the severe interfacial reaction in the composite, wherein Al3BC and AlB2 become the dominant phases, and the remaining B4C particles are uniformly distributed in the ceramic phase matrix. The hardness of the composite improves to 56.8HRC. However, the flexural strength of the composite drops to 248 MPa, which is due to the presence of the micropore defects derived from the high-temperature sintering process of B4C fine particle.
Key words:  boron carbide    composite    pressureless infiltration    mechanical properties    hardness
               出版日期:  2019-10-25      发布日期:  2019-08-29
ZTFLH:  TB333.1+2  
基金资助: 国家重点研发计划课题(2017YFB0703102)
作者简介:  曹雷刚,北方工业大学,讲师。2014年10月毕业于利兹大学,材料学博士学位。2015年3月加入北方工业大学机械与材料工程学院至今,主要从事金属基复合材料和凝固理论相关研究。在国内外重要期刊发表文章10余篇。崔岩,北方工业大学,研究员。1997年5月毕业于哈尔滨工业大学复合材料专业,工学博士学位。1999年于北京航空材料研究院出站,2005年晋升研究员。2011年8月作为高层次人才由北京航空材料研究院引进到北方工业大学,长期从事金属基复合材料研究。累计发表学术论文60余篇,所研发的结构/功能一体化高体份铝基复合材料及其无压浸渗制备技术处于国内领先水平,并取得在航空、航天工程及军用电子领域数十个型号上实际应用的显著成果。cuiyan@ncut.edu.cn
引用本文:    
曹雷刚, 王晓荷, 崔岩, 杨越, 刘园. 碳化硼粒度对无压浸渗高体分铝基复合材料微观组织和力学性能的影响[J]. 材料导报, 2019, 33(20): 3472-3476.
CAO Leigang, WANG Xiaohe, CUI Yan, YANG Yue, LIU Yuan. Effect of B4C Particle Size on the Microstructure and Mechanical Properties of High Volume Fraction Aluminum Matrix Composite Fabricated by Pressureless Infiltration. Materials Reports, 2019, 33(20): 3472-3476.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090005  或          http://www.mater-rep.com/CN/Y2019/V33/I20/3472
1 Liu B, Huang W, Wang H, et al.Journal of Composite Materials, 2014, 48(3), 355.2 Yue X, Wang J, Yu S, et al.Materials & Design, 2013, 46, 285.3 Dai L Z. The produce, property research and Monte-Carlo simulation of B4C/Al neutron absorber composites. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2014(in Chinese).戴龙泽. B4C/Al中子吸收复合材料的制备、性能测试与蒙特卡罗模拟. 硕士学位论文, 南京航空航天大学, 2014.4 Abenojar J, Velasco F, Martínez M A.Journal of Materials Processing Technology, 2007, 184(1-3), 441.5 Canakci A, Varol T, zkaya S, et al.Universal Journal of Materials Science, 2014, 2(5), 90.6 Skorokhod V, Krstic V D.Journal of Materials Science Letters, 2000, 19(3), 237.7 Wang Y, Zhang Y, Tian Q, et al.Special Casting & Nonferrous Alloys, 2008(S1), 428(in Chinese).王扬卫, 张维官, 田擎东, 等.特种铸造及有色合金, 2008(S1), 428.8 Ravi B, Naik B B, Prakash J U.Materials Today: Proceedings, 2015, 2(4-5), 2984.9 Kubota M.Journal of Alloys and Compounds, 2010, 504(S1), S319.10 Chen H S, Wang W X, Li Y L, et al.Materials & Design, 2016, 94, 360.11 Li Q, Hua W, Cui Y, et al.Journal of Materials Engineering, 2003(4), 17(in Chinese).李青, 华文君, 崔岩, 等.材料工程, 2003(4), 17.12 Luo Z, Song Y, Zhang S, et al.Metallurgical & Materials Transactions A, 2012, 43(1), 281.13 Halverson D C, Pyzik A J, Aksay I A . U.S. Patent, US6855428, 2009.14 Pyzik A J, Beaman D R.Journal of the American Ceramic Society, 1995, 78(2), 305.15 Viala J C, Bouix J, Gonzalez G, et al.Journal of Materials Science, 1997, 32(17), 4559.16 Kawai C.Journal of the Ceramic Society of Japan, 2002, 110, 1016.17 Xue Y Q, Zhao H, Du J P.Chinese Journal of Inorganic Chemistry, 2006, 22(11), 1952(in Chinese).薛永强, 赵红, 杜建平.无机化学学报, 2006, 22(11), 1952.18 Xue Y Q, Duo J P, Wang P D, et al.Acta Physico-Chimica. Sinica, 2005, 21(7), 758(in Chinese).薛永强, 杜建平, 王沛东, 等.物理化学学报, 2005, 21(7), 758.19 Jagtap S B, Pande A R, Gokarn A N.International Journal of Mineral Processing, 1992, 36(1-2), 113.20 Lei P, Xia C Q, Zhou F, et al.Powder Metallurgy Materials Science and Engineering, 2012, 17(3), 321(in Chinese).雷攀, 夏长清, 周飞, 等.粉末冶金材料科学与工程, 2012, 17(3), 321.21 Jung J, Kang S.Journal of the American Ceramic Society, 2010, 87(1), 47.22 Zhan Z, Chen X G, Charette A.Journal of Materials Science, 2007, 42(17), 7354.23 Luo Z P, Sun C Y.Materials Characterization, 2003, 50(1), 51.24 Wang D, Xue X, Liu R, et al.Materials Review, 2007, 21(S1), 388(in Chinese).王东山, 薛向欣, 刘然, 等.材料导报, 2007, 21(专辑8), 388.25 Übeyli M, Acir A, Karaka M S, et al.Science and Engineering of Composite Materials, 2008, 15(2), 131.26 Fu B, Li S R, Wang Y L.Atomic Energy Science and Technology, 1997, 31(5), 400(in Chinese).傅博, 李盛荣, 王永兰.原子能科学技术, 1997, 31(5), 400.
[1] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[2] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[3] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[4] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[5] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[6] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[7] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[8] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[9] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[10] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[11] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[12] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[13] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[14] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[15] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed