Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3126-3132    https://doi.org/10.11896/cldb.19040004
  无机非金属及其复合材料 |
碳酸化钢渣及其在建筑材料中的应用现状
房延凤1,王丹2,王晴1,孔靖勋3,常钧2,
1 沈阳建筑大学材料科学与工程学院,沈阳 110168
2 大连理工大学土木工程学院,大连 116024
3 辽宁省交通规划设计院有限责任公司公路养护技术研发中心,沈阳 110111
A Review on Carbonation of Steel Slag and Its Application in Building Materials
FANG Yanfeng1,WANG Dan2,WANG Qing1,KONG Jingxun3,CHANG Jun2,
1 School of Materials Science and Engineering,Shenyang Jianzhu University,Shenyang 110168,China
2 School of Civil Engineering,Dalian University of Technology,Dalian 116024,China
3 Highway Maintenance Technology Research and Development Center,Liaoning Provincial Transportation Planning and Design Institute Co.,Ltd.,Shenyang 110111,China
下载:  全 文 ( PDF ) ( 7619KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着全球变暖越来越受到关注,温室气体二氧化碳(CO2)的排放、捕集与储存也越来越受到重视。矿物碳酸化技术是指通过一定的技术手段加速自然界中碱性矿物与CO2的反应,进而形成稳定的碳酸盐。该技术所得反应产物稳定,对环境无污染,是一种有潜力的CO2储存技术。然而,自然界中天然矿物的固碳效率低、储存CO2需要消耗大量的自然资源、成本高等缺点阻碍了矿物碳酸化技术的发展。利用钢渣等碱性工业废渣代替天然的碱性矿物来储存CO2为减少CO2的排放提供了一种可行的途径,同时也为工业废渣的资源化利用提供了一种全新的思路。钢渣的固碳量及碳酸化速度受诸多因素影响,近年来国内外学者在钢渣的碳酸化机理、钢渣固碳量的影响因素、提高钢渣碳酸化效率及优化碳酸化工艺参数、降低能耗等方面做了大量的工作并取得了丰硕的成果。但我国钢渣产量大,如果仅仅用钢渣碳酸化技术来固碳会增加钢渣的容重并进一步增加钢渣处理的难度,同时也会造成资源浪费。因此,众多研究者通过碳酸化养护钢渣技术制备建筑材料制品,实现钢渣的建材资源化利用,以期解决钢渣在建筑材料中应用时体积安定性不良的问题。本文从钢渣的碳酸化机理,钢渣中不同碱性矿物的固碳能力及特点,提高钢渣固碳量的措施等方面对碳酸化钢渣的研究进展进行了综述。同时着重介绍了碳酸化钢渣在建筑材料领域中的应用及碳酸化养护对钢渣制品及钢渣混凝土力学性能和微观结构的影响,分析了碳酸化钢渣在建筑材料中应用的前景、技术难点、挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
房延凤
王丹
王晴
孔靖勋
常钧
关键词:  二氧化碳(CO2)  碳酸化  钢渣  力学性能  微观结构  建筑材料    
Abstract: As global warming receives more and more attention, greenhouse gas carbon dioxide (CO2) emissions, capture and storage are also receiving increasing attention. Mineral carbonation technology refers to the acceleration reaction between alkaline minerals in nature with CO2 to form stable carbonates by specific technology. It has became a promising CO2 storage technology due to the stable and environmentally friendly carbonation products. However, natural minerals show low carbonation activity and low CO2 uptake. In addition, CO2 emitted from fossil fuel combustion requires a large amount of natural resources and high energy to form carbonates. The above-mentioned disadvantages hinder the development of mineral carbonation technology. Alkaline industrial waste such as steel slag is proposed to replace natural alkaline minerals for mineral carbonation. It provides a feasible way to reduce CO2 emissions, and also provides a new resolution for the utilization of industrial waste.
The CO2 uptake and carbonation rate of steel slag are affected by many factors. In recent years, domestic and foreign scholars have done a lot of work to explore carbonation mechanism of steel slag, optimize the parameters of carbonation process, increase CO2 uptake, reduce energy consumption, and have achieved fruitful results. However, China produces a large amount of steel slag every year and the utilization is limited. If steel slag is only used for CO2 capture, it will increase the bulk density of steel slag and further increase the difficulty of steel slag treatment, and in addition, steel slag cannot be used efficiently. Therefore, many researchers have developed a carbonation curing technology to prepare building materials to realize the utilization of steel slag, in order to solve the problem of poor volume stability when steel slag is applied in building materials.
Carbonation mechanism of steel slag, carbon sequestration ability and characteristics of different alkaline minerals in steel slag, and the mea-sures to increase carbon sequestration of steel slag are reviewed in this paper. In addition, the application of carbonated steel slag in building materials and the effects of carbonation on the mechanical properties and microstructure of steel slag are introduced. The prospects, technical difficulties and challenges of applying carbonated steel slag in building materials are discussed.
Key words:  carbon dioxide (CO2)    carbonation    steel slag    mechanical properties    microstructure    building materials
                    发布日期:  2020-01-03
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51808354);辽宁省自然科学基金(20180550127);中国博士后科学基金资助项目(2018M641712);硅酸盐建筑材料国家重点实验室开放基金(武汉理工大学)
通讯作者:  mlchang@dlut.edu.cn   
作者简介:  房延凤,博士,沈阳建筑大学材料科学与工程学院讲师。2017年博士毕业于大连理工大学。主要从事工业废渣建材资源化利用及特种水泥方面的研究,近年来主持国家自然科学基金项目1项,辽宁省自然科学基金,辽宁省高等学校基本科研项目等省部级项目4项,参与国家自然科学基金项目等省部级以上项目3项,在碳酸化养护钢渣方向发表论文10余篇;常钧,大连理工大学教授、博士研究生导师。主要从事特种水泥与混凝土、废渣综合利用及水泥基功能材料等方面的研究。参加和主持完成国家863、国家973、国家科技支撑计划、国家自然科学基金和省部级的科研项目10余项;获得包括国家技术发明二等奖、国家建材行业科技进步二等奖、山东省科技进步一等奖、山东省技术发明一等奖等在内的国家级和省部级科技奖励7项。2005年获“山东省优秀青年知识分子”称号,2010年获得山东省青年科技奖;2010年入选教育部新世纪优秀人才支持计划。
引用本文:    
房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
FANG Yanfeng,WANG Dan,WANG Qing,KONG Jingxun,CHANG Jun. A Review on Carbonation of Steel Slag and Its Application in Building Materials. Materials Reports, 2020, 34(3): 3126-3132.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040004  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3126
1 Zoundi Z.Renewable and Sustainable Energy Reviews, 2017, 72, 1067.
2 Shackley S, Mclachlan C, Gough C.Climate Policy, 2004, 4(4), 377.
3 van Alphen K, Hekkert M P, Turkenburg W C.International Journal of Greenhouse Gas Control, 2010, 4(2), 396.
4 Kheshgi H, de Coninck H, Kessels J.Mitigation and Adaptation Strategies for Global Change, 2012, 17(6), 563.
5 Kerra T, Havercroftb I, Dixonc T.Physics Procedia, 2009, 7(1), 4395.
6 Voormeij D A, Simandl G J.Geoscience Canada, 2004, 31(1), 11.
7 Bao W, Li H, Zhang Y. CIESC Journal, 2007, 58(1), 1(in Chinese).
包炜军,李会泉,张懿. 化工学报, 2007, 58(1), 1.
8 Seifritz W.Nature, 1990, 345, 486.
9 Johnson D C.Accelerated carbonation of waste calcium silicate materials, Society of Chemical Industry, UK, 2000.
10 Xu D, Cui Y, Li H, et al.Cement and Concrete Research, 2015, 78, 2.
11 Wu S, Xue Y, Ye Q, et al.Building & Environment, 2007, 42(7), 2580.
12 Jiang Y, Ling T, Shi C, et al.Resources, Conservation and Recycling, 2018, 136, 187.
13 Dhoble Y N, Ahmed S.Journal of Material Cycles and Waste Management, 2018, 20(3), 1373.
14 Yi H, Xu G, Cheng H, et al.Procedia Environmental Sciences, 2012, 16, 791.
15 Bonenfant D, Kharoune L, Sauve S, et al.Industrial & Engineering Chemistry Research, 2008, 47(20), 7610.
16 Eloneva S, Teir S, Salminen J, et al. Energy, 2008, 33(9), 1461.
17 Baciocchi R, Costa G, Di Bartolomeo E, et al.Waste and Biomass Valorization, 2010, 1(4), 467.
18 Kirchofer A, Brandt A, Krevor S, et al.Energy Procedia, 2013, 37, 5858.
19 Bodor M, Santos R M, Kriskova L, et al.European Journal of Mineralogy, 2013, 25(4), 533.
20 Iacobescu R I, Pontikes Y, Koumpouri D, et al.Cement and Concrete Composites, 2013, 44, 1.
21 Iacobescu R I, Koumpouri D, Pontikes Y, et al.Journal of Hazardous Materials, 2011, 196, 287.
22 Cao M, Li Y, Chang J, et al. Journal of Chinese Electron Microscopy Society, 2013, 41(6), 831(in Chinese).
曹明莉,李勇,常钧,等. 硅酸盐学报, 2013, 41(6), 831.
23 Mo L, Panesar D K.Cement and Concrete Research, 2012, 42(6), 769.
24 Pan S Y, Chang E E, Chiang P C. Aerosol and Air Quality Research, 2012, 12(5), 770.
25 Costa G, Polettini A, Pomi R, et al.Journal of Hazardous Materials, 2016, 302, 415.
26 Bao W, Li H, Zhang Y.Industrial & Engineering Chemistry Research, 2010, 49(5), 2055.
27 Chang J, Fang Y, Shang X.Materials and Structures, 2016, 49(7), 4417.
28 Chang J, Fang Y, Li Y. Journal of Chinese Electron Microscopy Society, 2014, 42(11), 1377 (in Chinese).
常钧,房延凤,李勇.硅酸盐学报, 2014, 42(11), 1377.
29 Sevelsted T F, Skibsted J.Cement and Concrete Research, 2015, 71, 56.
30 Iavija B, Lukovi M. Construction and Building Materials, 2016, 117, 285.
31 Ashraf W.Construction and Building Materials, 2016, 120, 558.
32 Mahoutian M, Shao Y, Mucci A, et al.Materials and Structures, 2015, 48(9), 3075.
33 Baciocchi R, Costa G, Di Gianfilippo M, et al.Journal of Hazardous Materials, 2015, 283, 302.
34 Zaid G, Roderick I L, Shao Y. Journal of CO2 Utilization, 2017, 18, 125.
35 Rostami V, Shao Y, Boyd A J.Construction and Building Materials, 2011, 25(8), 3345.
36 Fang Y, Chang J.Construction and Building Materials, 2015, 76, 360.
37 Ee C, Sy P, Yh C, et al.Journal of Hazardous Materials, 2011, 195(1), 107.
38 Santos R M, Van Bouwel J, Vandevelde E, et al.International Journal of Greenhouse Gas Control, 2013, 17,32.
39 Huijgen W J, Witkamp G, Comans R N.Environmental Science & Technology, 2005, 39(24), 9676.
40 Polettini A, Pomi R, Stramazzo A.Journal of Environmental Management, 2016, 167, 185.
41 Baciocchi R, Costa G, Di Gianfilippo M, et al.Journal of Hazardous Materials, 2015, 283, 302.
42 Berryman E J, Williams-Jones A E, Migdisov A A.Journal of Environmental Sciences, 2015, 27, 266.
43 Chen K, Pan S, Chen C, et al.Journal of Cleaner Production, 2016, 124, 350.
44 Baciocchi R, Costa G, Polettini A, et al.Energy Procedia, 2009, 1(1), 4859.
45 Lekakh S N, Rawlins C H, Robertson D G C, et al.Metallurgical and Materials Transactions B, 2008, 39(1), 125.
46 Blencoe J G, Anovitz L M, Palmer D A, et al.In:2nd Annual Conference on Carbon Sequestration, Alexandria, 2003.
47 Baciocchi R, Costa G, Di Bartolomeo E, et al.Greenhouse Gases: Science and Technology, 2011, 1(4),312.
48 Baciocchi R, Costa G, Polettini A, et al.Frontiers in Energy Research, 2016, 3,56.
49 Araizi P K, Hills C D, Maries A, et al.Waste Management, 2016, 50, 121.
50 Baciocchi R, Costa G, Di Bartolomeo E, et al.Waste and Biomass Valorization, 2010, 1(4), 467.
51 Uibu M, Kuusik R, Andreas L, et al.Energy Procedia, 2011, 4, 925.
52 Chang E, Pan S, Chen Y, et al.Journal of Hazardous Materials, 2012, 227-228, 97.
53 Santos R M, Ling D, Sarvaramini A, et al.Chemical Engineering Journal, 2012, 203, 239.
54 Santos R M, François D, Mertens G, et al.Applied Thermal Engineering, 2013, 57(1-2), 154.
55 Chang E E, Chiu A, Pan S, et al.International Journal of Greenhouse Gas Control, 2013, 12, 382.
56 Pan S, Chiang P, Chen Y, et al.Environmental Science & Technology, 2013, 47(7), 3308.
57 Chang E E, Chen T, Pan S, et al. Journal of Hazardous Materials, 2013, 260, 937.
58 Santos R M, Van Bouwel J, Vandevelde E, et al.International Journal of Greenhouse Gas Control, 2013, 17, 32.
59 Baciocchi R, Costa G, Polettini A, et al.Journal of Hazardous Materials, 2015, 286, 369.
60 Yadav S, Mehra A.Waste Management, 2017, 64, 348.
61 Ghouleh Z, Guthrie R I L, Shao Y.Construction and Building Materials, 2015, 99,175.
62 Mahoutian M, Shao Y, Mucci A, et al.Materials and Structures, 2015, 48(9), 3075.
63 Johnson D C, Macleod C L, Carey P J, et al.Environment Technology, 2003, 24(6), 671.
64 Chang J, Wu H. Journal of the Chinese Ceramic Society, 2010, 38(7), 1185(in Chinese).
常钧,吴昊泽.硅酸盐学报, 2010, 38(7), 1185.
65 Wu H, Zhang L, Ye Z, et al. Journal of Jinan University(Science and Technology), 2009, 23(3), 221(in Chinese).
吴昊泽,张林菊,叶正茂,等.济南大学学报(自然科学版), 2009, 23(3), 221.
66 Fang Y. Carbonation of alkaline minerals in steel slag and products evolution process. Ph. D. Thesis, Dalian University of Technology, China, 2017(in Chinese).
房延凤.钢渣中碱性矿物碳酸化及产物衍变规律研究, 博士学位论文,大连理工大学, 2017.
67 Pang B, Zhou Z, Xu H.Construction and Building Materials, 2015, 84, 454.
68 Morone M, Costa G, Georgakopoulos E, et al.Waste and Biomass Valorization, 2017, 8(5),1381.
69 Zhang W S, Shi D, Shao Z J, et al.Key Engineering Materials, 2012, 509, 113.
70 Zhao H, Wu H, Chang J, et al. Journal of Jinan University(Science and Technology), 2010, 24(3), 221(in Chinese).
赵华磊,吴昊泽,常钧, 等.济南大学学报(自然科学版), 2010, 24(3), 221.
71 Quaghebeur M, Nielsen P, Horckmans L, et al.Frontiers in Energy Research, 2015, 3, 52.
72 Zhang F, Mo L, Deng M. Journal of the Chinese Ceramic Society, 2016, 44(5), 640 (in Chinese).
张丰,莫立武,邓敏.硅酸盐学报, 2016, 44(5), 640.
73 Salman M, Cizer Ö, Pontikes Y, et al. Chemical Engineering Journal, 2014, 246, 39.
74 Mo L, Zhang F, Deng M. Cement and Concrete Research, 2016, 88, 217.
75 Fang Y, Zhang T, Chang J. Journal of Chinese Electron Microscopy Society, 2015(6), 464 (in Chinese).
房延凤,张婷婷,常钧.电子显微学报, 2015(6), 464.
76 Yu J, Wang K. Energy & Fuels, 2011, 25(11), 5483.
77 Thomas J J, Chen J J, Allen A J, et al. Cement and Concrete Research, 2004, 34(12), 2297.
78 Pan S Y, Chung T C, Ho C C, et al. Scientific Reports, 2017, 7(1), 17227.
79 Moon E, Choi Y C. Journal of Cleaner Production, 2018, 180, 642.
80 Bodor M, Santos R M, Cristea G, et al. Cement and Concrete Composites, 2016, 65, 55.
[1] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[2] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[3] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[4] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[5] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[6] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[7] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[8] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[9] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[10] 王官充, 冯拉俊. Er含量对FeSiB合金结构演变的影响[J]. 材料导报, 2020, 34(2): 2088-2092.
[11] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[12] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[13] 任国宏, 廖洪强, 程芳琴, 闫志华. 发泡混凝土碱浸试块碳酸化增强固碳特性研究[J]. 材料导报, 2019, 33(Z2): 300-303.
[14] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[15] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed