1 School of Materials Science and Engineering,Shenyang Jianzhu University,Shenyang 110168,China 2 School of Civil Engineering,Dalian University of Technology,Dalian 116024,China 3 Highway Maintenance Technology Research and Development Center,Liaoning Provincial Transportation Planning and Design Institute Co.,Ltd.,Shenyang 110111,China
Abstract: As global warming receives more and more attention, greenhouse gas carbon dioxide (CO2) emissions, capture and storage are also receiving increasing attention. Mineral carbonation technology refers to the acceleration reaction between alkaline minerals in nature with CO2 to form stable carbonates by specific technology. It has became a promising CO2 storage technology due to the stable and environmentally friendly carbonation products. However, natural minerals show low carbonation activity and low CO2 uptake. In addition, CO2 emitted from fossil fuel combustion requires a large amount of natural resources and high energy to form carbonates. The above-mentioned disadvantages hinder the development of mineral carbonation technology. Alkaline industrial waste such as steel slag is proposed to replace natural alkaline minerals for mineral carbonation. It provides a feasible way to reduce CO2 emissions, and also provides a new resolution for the utilization of industrial waste. The CO2 uptake and carbonation rate of steel slag are affected by many factors. In recent years, domestic and foreign scholars have done a lot of work to explore carbonation mechanism of steel slag, optimize the parameters of carbonation process, increase CO2 uptake, reduce energy consumption, and have achieved fruitful results. However, China produces a large amount of steel slag every year and the utilization is limited. If steel slag is only used for CO2 capture, it will increase the bulk density of steel slag and further increase the difficulty of steel slag treatment, and in addition, steel slag cannot be used efficiently. Therefore, many researchers have developed a carbonation curing technology to prepare building materials to realize the utilization of steel slag, in order to solve the problem of poor volume stability when steel slag is applied in building materials. Carbonation mechanism of steel slag, carbon sequestration ability and characteristics of different alkaline minerals in steel slag, and the mea-sures to increase carbon sequestration of steel slag are reviewed in this paper. In addition, the application of carbonated steel slag in building materials and the effects of carbonation on the mechanical properties and microstructure of steel slag are introduced. The prospects, technical difficulties and challenges of applying carbonated steel slag in building materials are discussed.
房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
FANG Yanfeng,WANG Dan,WANG Qing,KONG Jingxun,CHANG Jun. A Review on Carbonation of Steel Slag and Its Application in Building Materials. Materials Reports, 2020, 34(3): 3126-3132.
1 Zoundi Z.Renewable and Sustainable Energy Reviews, 2017, 72, 1067. 2 Shackley S, Mclachlan C, Gough C.Climate Policy, 2004, 4(4), 377. 3 van Alphen K, Hekkert M P, Turkenburg W C.International Journal of Greenhouse Gas Control, 2010, 4(2), 396. 4 Kheshgi H, de Coninck H, Kessels J.Mitigation and Adaptation Strategies for Global Change, 2012, 17(6), 563. 5 Kerra T, Havercroftb I, Dixonc T.Physics Procedia, 2009, 7(1), 4395. 6 Voormeij D A, Simandl G J.Geoscience Canada, 2004, 31(1), 11. 7 Bao W, Li H, Zhang Y. CIESC Journal, 2007, 58(1), 1(in Chinese). 包炜军,李会泉,张懿. 化工学报, 2007, 58(1), 1. 8 Seifritz W.Nature, 1990, 345, 486. 9 Johnson D C.Accelerated carbonation of waste calcium silicate materials, Society of Chemical Industry, UK, 2000. 10 Xu D, Cui Y, Li H, et al.Cement and Concrete Research, 2015, 78, 2. 11 Wu S, Xue Y, Ye Q, et al.Building & Environment, 2007, 42(7), 2580. 12 Jiang Y, Ling T, Shi C, et al.Resources, Conservation and Recycling, 2018, 136, 187. 13 Dhoble Y N, Ahmed S.Journal of Material Cycles and Waste Management, 2018, 20(3), 1373. 14 Yi H, Xu G, Cheng H, et al.Procedia Environmental Sciences, 2012, 16, 791. 15 Bonenfant D, Kharoune L, Sauve S, et al.Industrial & Engineering Chemistry Research, 2008, 47(20), 7610. 16 Eloneva S, Teir S, Salminen J, et al. Energy, 2008, 33(9), 1461. 17 Baciocchi R, Costa G, Di Bartolomeo E, et al.Waste and Biomass Valorization, 2010, 1(4), 467. 18 Kirchofer A, Brandt A, Krevor S, et al.Energy Procedia, 2013, 37, 5858. 19 Bodor M, Santos R M, Kriskova L, et al.European Journal of Mineralogy, 2013, 25(4), 533. 20 Iacobescu R I, Pontikes Y, Koumpouri D, et al.Cement and Concrete Composites, 2013, 44, 1. 21 Iacobescu R I, Koumpouri D, Pontikes Y, et al.Journal of Hazardous Materials, 2011, 196, 287. 22 Cao M, Li Y, Chang J, et al. Journal of Chinese Electron Microscopy Society, 2013, 41(6), 831(in Chinese). 曹明莉,李勇,常钧,等. 硅酸盐学报, 2013, 41(6), 831. 23 Mo L, Panesar D K.Cement and Concrete Research, 2012, 42(6), 769. 24 Pan S Y, Chang E E, Chiang P C. Aerosol and Air Quality Research, 2012, 12(5), 770. 25 Costa G, Polettini A, Pomi R, et al.Journal of Hazardous Materials, 2016, 302, 415. 26 Bao W, Li H, Zhang Y.Industrial & Engineering Chemistry Research, 2010, 49(5), 2055. 27 Chang J, Fang Y, Shang X.Materials and Structures, 2016, 49(7), 4417. 28 Chang J, Fang Y, Li Y. Journal of Chinese Electron Microscopy Society, 2014, 42(11), 1377 (in Chinese). 常钧,房延凤,李勇.硅酸盐学报, 2014, 42(11), 1377. 29 Sevelsted T F, Skibsted J.Cement and Concrete Research, 2015, 71, 56. 30 Iavija B, Lukovi M. Construction and Building Materials, 2016, 117, 285. 31 Ashraf W.Construction and Building Materials, 2016, 120, 558. 32 Mahoutian M, Shao Y, Mucci A, et al.Materials and Structures, 2015, 48(9), 3075. 33 Baciocchi R, Costa G, Di Gianfilippo M, et al.Journal of Hazardous Materials, 2015, 283, 302. 34 Zaid G, Roderick I L, Shao Y. Journal of CO2 Utilization, 2017, 18, 125. 35 Rostami V, Shao Y, Boyd A J.Construction and Building Materials, 2011, 25(8), 3345. 36 Fang Y, Chang J.Construction and Building Materials, 2015, 76, 360. 37 Ee C, Sy P, Yh C, et al.Journal of Hazardous Materials, 2011, 195(1), 107. 38 Santos R M, Van Bouwel J, Vandevelde E, et al.International Journal of Greenhouse Gas Control, 2013, 17,32. 39 Huijgen W J, Witkamp G, Comans R N.Environmental Science & Technology, 2005, 39(24), 9676. 40 Polettini A, Pomi R, Stramazzo A.Journal of Environmental Management, 2016, 167, 185. 41 Baciocchi R, Costa G, Di Gianfilippo M, et al.Journal of Hazardous Materials, 2015, 283, 302. 42 Berryman E J, Williams-Jones A E, Migdisov A A.Journal of Environmental Sciences, 2015, 27, 266. 43 Chen K, Pan S, Chen C, et al.Journal of Cleaner Production, 2016, 124, 350. 44 Baciocchi R, Costa G, Polettini A, et al.Energy Procedia, 2009, 1(1), 4859. 45 Lekakh S N, Rawlins C H, Robertson D G C, et al.Metallurgical and Materials Transactions B, 2008, 39(1), 125. 46 Blencoe J G, Anovitz L M, Palmer D A, et al.In:2nd Annual Conference on Carbon Sequestration, Alexandria, 2003. 47 Baciocchi R, Costa G, Di Bartolomeo E, et al.Greenhouse Gases: Science and Technology, 2011, 1(4),312. 48 Baciocchi R, Costa G, Polettini A, et al.Frontiers in Energy Research, 2016, 3,56. 49 Araizi P K, Hills C D, Maries A, et al.Waste Management, 2016, 50, 121. 50 Baciocchi R, Costa G, Di Bartolomeo E, et al.Waste and Biomass Valorization, 2010, 1(4), 467. 51 Uibu M, Kuusik R, Andreas L, et al.Energy Procedia, 2011, 4, 925. 52 Chang E, Pan S, Chen Y, et al.Journal of Hazardous Materials, 2012, 227-228, 97. 53 Santos R M, Ling D, Sarvaramini A, et al.Chemical Engineering Journal, 2012, 203, 239. 54 Santos R M, François D, Mertens G, et al.Applied Thermal Engineering, 2013, 57(1-2), 154. 55 Chang E E, Chiu A, Pan S, et al.International Journal of Greenhouse Gas Control, 2013, 12, 382. 56 Pan S, Chiang P, Chen Y, et al.Environmental Science & Technology, 2013, 47(7), 3308. 57 Chang E E, Chen T, Pan S, et al. Journal of Hazardous Materials, 2013, 260, 937. 58 Santos R M, Van Bouwel J, Vandevelde E, et al.International Journal of Greenhouse Gas Control, 2013, 17, 32. 59 Baciocchi R, Costa G, Polettini A, et al.Journal of Hazardous Materials, 2015, 286, 369. 60 Yadav S, Mehra A.Waste Management, 2017, 64, 348. 61 Ghouleh Z, Guthrie R I L, Shao Y.Construction and Building Materials, 2015, 99,175. 62 Mahoutian M, Shao Y, Mucci A, et al.Materials and Structures, 2015, 48(9), 3075. 63 Johnson D C, Macleod C L, Carey P J, et al.Environment Technology, 2003, 24(6), 671. 64 Chang J, Wu H. Journal of the Chinese Ceramic Society, 2010, 38(7), 1185(in Chinese). 常钧,吴昊泽.硅酸盐学报, 2010, 38(7), 1185. 65 Wu H, Zhang L, Ye Z, et al. Journal of Jinan University(Science and Technology), 2009, 23(3), 221(in Chinese). 吴昊泽,张林菊,叶正茂,等.济南大学学报(自然科学版), 2009, 23(3), 221. 66 Fang Y. Carbonation of alkaline minerals in steel slag and products evolution process. Ph. D. Thesis, Dalian University of Technology, China, 2017(in Chinese). 房延凤.钢渣中碱性矿物碳酸化及产物衍变规律研究, 博士学位论文,大连理工大学, 2017. 67 Pang B, Zhou Z, Xu H.Construction and Building Materials, 2015, 84, 454. 68 Morone M, Costa G, Georgakopoulos E, et al.Waste and Biomass Valorization, 2017, 8(5),1381. 69 Zhang W S, Shi D, Shao Z J, et al.Key Engineering Materials, 2012, 509, 113. 70 Zhao H, Wu H, Chang J, et al. Journal of Jinan University(Science and Technology), 2010, 24(3), 221(in Chinese). 赵华磊,吴昊泽,常钧, 等.济南大学学报(自然科学版), 2010, 24(3), 221. 71 Quaghebeur M, Nielsen P, Horckmans L, et al.Frontiers in Energy Research, 2015, 3, 52. 72 Zhang F, Mo L, Deng M. Journal of the Chinese Ceramic Society, 2016, 44(5), 640 (in Chinese). 张丰,莫立武,邓敏.硅酸盐学报, 2016, 44(5), 640. 73 Salman M, Cizer Ö, Pontikes Y, et al. Chemical Engineering Journal, 2014, 246, 39. 74 Mo L, Zhang F, Deng M. Cement and Concrete Research, 2016, 88, 217. 75 Fang Y, Zhang T, Chang J. Journal of Chinese Electron Microscopy Society, 2015(6), 464 (in Chinese). 房延凤,张婷婷,常钧.电子显微学报, 2015(6), 464. 76 Yu J, Wang K. Energy & Fuels, 2011, 25(11), 5483. 77 Thomas J J, Chen J J, Allen A J, et al. Cement and Concrete Research, 2004, 34(12), 2297. 78 Pan S Y, Chung T C, Ho C C, et al. Scientific Reports, 2017, 7(1), 17227. 79 Moon E, Choi Y C. Journal of Cleaner Production, 2018, 180, 642. 80 Bodor M, Santos R M, Cristea G, et al. Cement and Concrete Composites, 2016, 65, 55.