Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4126-4131    https://doi.org/10.11896/cldb.18120145
  高分子与聚合物基复合材料 |
碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能
陈林1, 刘虹财1, 严磊1, 郭怡1, 林宏1, 蔺海兰1, 卞军1, 赵新为2
1 西华大学材料科学与工程学院,成都 610039;
2 东京理工大学物理学部,新宿区,东京 162-8601,日本
Structure and Properties of Polyvinylidene Fluoride Dielectric Composites Modified by Carbon Nanotubes
CHEN Lin1, LIU Hongcai1, YAN Lei1, GUO Yi1, LIN Hong1, LIN Hailan1, BIAN Jun1, ZHAO Xinwei2
1 College of Materials Science and Engineering, Xihua University, Chengdu 610039, China;
2 Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-Ku, Tokyo 162-8601, Japan
下载:  全 文 ( PDF ) ( 5083KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以聚偏氟乙烯(PVDF)为基体材料,再分别以酸化多壁碳纳米管(MWCNTs-COOH)和未酸化多壁碳纳米管(MWCNTs)为填料,通过熔融法制备了不同填料含量的MWCNTs-COOH/PVDF及MWCNTs/PVDF介电复合材料。分别采用红外光谱(FTIR)、扫描电镜(SEM)、X射线衍射(XRD)、拉伸性能测试、电性能测试、差示扫描量热分析(DSC)等方法系统研究了填料含量和碳纳米管酸化前后对复合材料的热性能、力学性能和电性能的影响。XRD测试表明,填料MWCNTs-COOH和MWCNTs的加入促进了PVDF中β晶的生成。力学性能分析表明,MWCNTs-COOH和PVDF形成的界面结合力更强,复合材料的力学强度更高,当MWCNTs-COOH的质量分数为12%时,复合材料的拉伸强度可达64.6 MPa,较纯PVDF提高了24%。介电性能分析表明:未酸化的多壁碳纳米管更容易在PVDF基中构成局部导电网络,促进电子位移极化,提高复合材料的介电常数,并在MWCNTs的质量分数为12%时达到渗流阈值,介电常数达到了286,是纯PVDF的36倍。DSC测试表明,随着填料的增加,介电复合材料的结晶温度、熔融温度和结晶度都相较于纯PVDF得到了提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈林
刘虹财
严磊
郭怡
林宏
蔺海兰
卞军
赵新为
关键词:  聚偏氟乙烯(PVDF)  多壁碳纳米管(MWCNTs)  热性能  力学性能  介电性能    
Abstract: Polyvinylidene fluoride (PVDF) was used as matrix, acidified multi-walled carbon nanotubes (MWCNTs-COOH) and unacidified multi-walled carbon nanotubes as functional fillers and MWCNTs-COOH/PVDF, MWCNTs/PVDF composites with different fillers contents were prepared by melt blending. FTIR, SEM, XRD, tensile test, electrical property test, DSC, and other methods were used to study the influence of MWCNTs content and before and after acidification of carbon nanotubes on thermal properties, mechanical properties and electrical properties of the prepared composites. XRD test showed that the addition of MWCNTs-COOH and MWCNTs promoted the formation of β crystal of PVDF. Mechanical analysis showed that interfacial interactions between the MWCNTs-COOH and PVDF was stronger, resulting in the higher mechanical strength of the composites. When the filler contents of MWCNTs-COOH was 12wt%, the tensile strength of the composites reached 64.6 MPa, which increased by 24% compared with pure PVDF. The dielectric property analysis showed that the unacidified multi-walled carbon nanotubes were more likely to form local conductive networks in the PVDF matrix, promoting the electron displacement polarization and improving the dielectric constant. When the contents of MWCNTs was 12wt%, the percolation threshold was reached and the dielectric constant reached 286, which was 36 times of pure PVDF. DSC test showed that with the addition of MWCNTs-COOH and MWCNTs, the crystallization temperature, melting temperature and crystallinity of the dielectric composites were higher than those of pure PVDF.
Key words:  polyvinylidene fluorider    multi-walled carbon nanotubes    thermal performance    mechanical properties    dielectric properties
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TQ332  
基金资助: 国家教育部春晖计划合作项目(Z2018088);西华大学大健康管理中心开放研究基金(DJKG2019-002);西华大学西华杯大学生创 新创业项目(2019051);国家级大学生创新创业训练计划项目(201910623007)及创新创业环境下“大材料学科”专业综合改革与建设实践教学团队项目(05050028)
通讯作者:  bianjun2003@163.com   
作者简介:  陈林,于2017年9月考入西华大学,攻读材料科学与工程硕士学位,一直从事高分子共混改性研究;卞军,西华大学材料科学与工程学院,教授,四川省高层次留学回国人才。2009年7月毕业于中山大学,获材料物理与化学专业博士学位。同年进入西华大学工作至今,期间于2012—2013年获国家留学基金委资助赴美国阿克伦大学高分子学院从事高级访问学者研究。目前主要从事高分子基纳米复合材料的设计、制备、加工及表征方面的基础研究和应用研究。主持国家自然科学基金、教育部和四川省教育厅及企业横向合作项目多项,在国内外重要期刊发表学术论文80余篇,申报发明专利10余项。
引用本文:    
陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
CHEN Lin, LIU Hongcai, YAN Lei, GUO Yi, LIN Hong, LIN Hailan, BIAN Jun, ZHAO Xinwei. Structure and Properties of Polyvinylidene Fluoride Dielectric Composites Modified by Carbon Nanotubes. Materials Reports, 2020, 34(4): 4126-4131.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120145  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4126
1 Zheng Y, Zhang J, Sun X, et al. Industrial and Engineering Chemistry Research, 2017, 56(15), 4580.
2 Zhou W, Gong Y, Tu L, et al. Journal of Alloys & Compounds, 2017, 693, 34643.
3 Foreman K, Poddar S, Ducharme S, et al. Journal of Applied Physics, 2017, 121(19), 34102.
4 Garciaiglesias M, Waal B, Gorbunov A, et al. Journal of the American Chemical Society, 2016, 138(19), 6217.
5 Lu H, Li L. Polymers for Advanced Technologies, 2018, 29(12), 3056.
6 Arjmand M, Sadeghi S, Khajehpour M, et al. The Journal of Physical Chemistry C, 2017, 121(1), 169.
7 Low Y, Tan L, Tan L, et al. Journal of Applied Polymer Science, 2013, 128(5), 2902.
8 Damaraju S, Wu S, Jaffe M, et al. Biomedical Materials, 2013, 8(4), 45007.
9 Ferreira A, Costa P, Carvalho H, et al. Journal of Polymer Research, 2011, 18(6), 1653.
10 Mai Z H, Xu Y T, Xie Q, et al. Engineering Plastics Application, 2014, 10(4), 118(in Chinese).
麦忠海, 徐玉亭, 谢琪, 等. 工程塑料应用, 2014, 10(4), 118.
11 Chen L, Xiao W Q, Yan L, et al. Journal of Functional Materials, 2018, 49(6), 6064(in Chinese).
陈林, 肖文强, 严磊,等. 功能材料, 2018, 49(6), 6064.
12 Souliéziakovic C, Nicolay R, Prevoteau A, et al. Chemistry - A European Journal, 2014, 20 (5), 1210.
13 Selvi M, Prabunathan P, Song J K, et al. Applied Physics Letters, 2013, 103(15), 539.
14 Mizutani K, Kohno H. Applied Physics Letters, 2016, 108(26), 56.
15 Saka C. Critical Reviews in Analytical Chemistry, 2017, 48(2), 00.
16 Levi N, Czerw R, Xing S, et al. Nano Letters, 2004, 4(7), 1267.
17 Liu H, He P, Jia L, et al. Ionics, 2018,9,1.
18 Zhou J, Cao J, Zou Y, et al. Microelectronic Engineering, 2017, 176, 89.
19 Gong T, Liu M Q, Liu H, et al. Polymer, 2017, 110, 1.
20 Zhao Z, Zheng W, Yu W, et al. Carbon, 2009, 47(8), 2118.
21 Saleh T A, Agarwal S, Gupta V K. Applied Catalysis B Environmental, 2011, 106(1),46.
22 Saleh T A. Applied Surface Science, 2011, 257(17), 7746.
23 Ke K, Potschke P, Jehnichen D, et al. Polymer, 2014, 55(2), 611.
24 Maity N, Mandal A, Nandi A K. Polymer, 2015, 65, 154.
25 Hang W B, Zhang Z X, Yang J H, et al. Carbon, 2015, 90, 242.
26 Ben I P, Talary M S, Caduff A, et al. Measurement Science and Techno-logy, 2013, 24(10), 102001.
[1] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[2] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[3] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[4] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[5] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[6] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[7] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[8] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[9] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[10] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[11] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[12] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[13] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[14] 路建宁, 王娟, 林颖菲, 郑开宏, 王海艳. 表面氧化处理对SiC/A356 Al复合材料组织及性能的影响[J]. 材料导报, 2020, 34(Z2): 381-385.
[15] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed