Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1131-1140    https://doi.org/10.11896/cldb.20010003
  无机非金属及其复合材料 |
混凝土劈裂拉伸测试方法及性能研究进展
黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚
湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
Research Progress on Splitting Tensile Test Methods and Mechanical Properties of Concrete
HUANG Yong, SHI Caijun, OUYANG Xue, ZHANG Chaohui, SHI Jinhua, WU Zemei
Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 5100KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 凝土作为最常见的土木工程材料,其抗拉性能对工程结构的受力性能和抗裂能力具有重要影响。相较于单轴拉伸试验和弯曲拉伸试验,劈裂拉伸试验作为一种抗拉强度间接测试方法,因其测试方法简单、便于使用,且测试结果与单轴拉伸强度更为接近,而广泛用于混凝土抗拉强度测试中,受到国内外学者的极大关注。由于混凝土材料种类较多,本文主要针对普通混凝土(Ordinary Portland concrete, OPC)、纤维增强混凝土(Fiber reinforced concrete, FRC)、高强混凝土(High strength concrete, HSC)、活性粉末混凝土(Reactive powder concrete, RPC)和超高性能混凝土(Ultra-high performance concrete, UHPC)等混凝土材料进行研究。针对混凝土劈裂拉伸性能的研究方法,本文从实验方法和数值模拟两个角度综述了其研究进展。此外,探讨了加载带宽度、试件尺寸、加载速率、缺口模式等因素对混凝土劈裂拉伸性能测试方法的影响,发现劈裂拉伸试验具有明显的尺寸效应并且加载带宽度和加载速率对劈裂拉伸强度有所影响;分别论述了不同缺口模式的实验原理和方法并对比了各缺口模式的适用情况。最后,进一步探讨了劈裂拉伸性能与抗拉、抗压力学性能的相互关系,并提出一定的适用范围,为今后混凝土的劈裂拉伸性能的研究应用提供科学指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄勇
史才军
欧阳雪
张超慧
史金华
吴泽媚
关键词:  劈裂拉伸测试  混凝土  拉伸力学性能  带缺口劈拉  强度    
Abstract: As the most common civil engineering material, the tensile property of concrete has a significant impact on the mechanical properties and crack resistance of engineering structures. Compared with uniaxial tensile and bending tensile test, as an indirect test method, splitting tensile test is the simplest and most commonly used test method and has attracted great attention. This study mainly focuses on the concrete mate-rials such as ordinary portland concrete (OPC), fiber reinforced concrete (FRC), high strength concrete (HSC), reactive powder concrete (RPC) and ultra-high performance concrete (UHPC). This study summarizes the research progress about experimental methods and the numerical simulation methods of splitting tensile properties. Then the influences of loading band width, specimen size, loading rates and notch mode on the test methods of splitting tensile properties are discussed. The results show that there exists obvious size effect on the splitting tensile strength, and the loading band width and loading rate have influence on the its values. The experimental mechanism and methods of different notch modes are discussed respectively and their applicability are also compared. Finally, the relationship between the splitting tensile properties and other mechanical properties are further studied, and a certain range of application is proposed to provide scientific guidance for the research and application of the splitting tensile properties in the future.
Key words:  splitting tensile test    concrete    tensile mechanical property    notch splitting test    strength
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TQ172  
基金资助: 国家重点研发计划(2018YFC0705400)
作者简介:  黄勇,2017年毕业于南昌大学,获得工学学士学位。现为湖南大学土木工程学院硕士研究生,在史才军教授的指导下进行研究。目前主要研究领域为UHPC力学性能。
史才军,国家第二批“千人计划”特聘专家、湖南省特聘专家、亚洲混凝土联合会副主席、湖南大学985工程创新平台首席科学家、特聘教授、博士生导师,中国建筑材料科学研究总院特聘教授、博士生导师,Taylor and Francis 学术期刊Journal of Sustainable Cement-based Materials创刊主编,Journal of Ceramics in Modern Technologies 共同主编、中国硅酸盐学会会刊《硅酸盐学报》副主编,Elsevier著名学术期刊Cement and Concrete ResearchCement and Concrete CompositesConstruction and Buil-ding Materials、Taylor & Francis学术期刊Journal of Structural Integrity and Maintenance、西班牙Materiales de Construccion、《材料导报》《建筑材料学报》《重庆交通大学学报》及《中国水泥》等期刊编委。在水泥和混凝土材料的设计、测试、耐久性、智能防渗漏材料及废物的利用和处置方面做了广泛深入的研究工作,发表高水平学术论文300余篇。出版英文著作7部,中文著作3部,合编国际会议英文论文集6本。2014年获湖南省“潇湘友谊”奖。2015—2017年“建设与建造”领域中国高被引学者,2016年全球土木工程领域高被引学者,2001年、2007和2016年分别当选为国际能源研究会、美国混凝土学会及国际材料与结构联合会的会士(Fellow)。
引用本文:    
黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
HUANG Yong, SHI Caijun, OUYANG Xue, ZHANG Chaohui, SHI Jinhua, WU Zemei. Research Progress on Splitting Tensile Test Methods and Mechanical Properties of Concrete. Materials Reports, 2021, 35(1): 1131-1140.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010003  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1131
1 Zain M F M, Mahmud H B, Ilham A, et al. Cement & Concrete Research,2002,32(8),1251.
2 Xu B W, Shi H S. Construction & Building Materials,2009,23(12),3468.
3 Haeri H, Sarfarazi V. Computers & Concrete,2016,18(1),39.
4 Khan M I. Applied Mechanics & Materials,2012,117-119,9.
5 Sarfarazi V, Schubert W. Periodica Polytechnica Civil Engineering,2016,61(2),176.
6 Swaddiwudhipong S, Lu H R, Wee T H. Cement & Concrete Research,2003,33(12),2077.
7 Kim J J, Taha M R. Advances in Civil Engineering,2014,2014,335.
8 Golewski G L. Journal of Cleaner Production,2018,172,218.
9 Wu Z, Shi C, He W, et al. Construction & Building Materials,2016,103,8.
10 Chen Y, Xu L, Xuan W, et al. Construction & Building Materials,2019,201,691.
11 Yin Y, Qiao Y, Hu S. Engineering Fracture Mechanics,2019,211,371.
12 Niu Y, Huang H, Zhang J, et al. Cement & Concrete Research,2019,125,105821.
13 Mehta P K, Monteiro P J M. Concrete: structure, properties and mate-rials,Prentice-Hall,USA,1986.
14 Ince R. Engineering Fracture Mechanics,2010,77(12),2233.
15 Shetty D K, Rosenfield A R, Duckworth W H. Engineering Fracture Mechanics,1987,26(6),825.
16 Olesen J F,Østergaard L, Stang H. Materials & Structures,2006,39(4),421.
17 Shafieifar M, Farzad M, Azizinamini A. Construction & Building Mate-rials,2017,156,402.
18 Guo Y B, Gao G F, Jing L, et al. International Journal of Impact Engineering,2019,125,188.
19 Wang R, Gao X, Li Q, et al. Construction & Building Materials,2018,171,708.
20 Djerbi A, Bonnet S, Khelidj A, et al. Cement & Concrete Research,2008,38(6),877.
21 Chen A C T, Chen W F. Computers & Structures,1976,6,451.
22 Zhu W C, Tang C A. International Journal of Rock Mechanics & Mining Sciences,2006,43(2),236.
23 Chen W. Plasticity in reinforced concrete, J. Ross Publishing, USA,2007.
24 China Academy of Building Research. Standard for test method of mecha-nical and physical performance on concrete: GB/T 50081-2019. China Architecture & Building Press,2019(in Chinese).
中华人民共和国住房和城乡建设部.混凝土物理力学性能试验方法标准: GB/T 50081-2019.中国建筑工业出版社,2019.
25 Carmona S, Aguado A. Materials & Structures,2012,45(10),1473.
26 Wang X, Zhang S, Wang C, et al. Construction & Building Materials,2019,221,60.
27 Mu R, Li H, Qing L, et al. Construction & Building Materials,2017,131,309.
28 Gao D Y, Zhao J, Tang J Y. China Civil Engineering Journal,2005,38(7),21(in Chinese).
高丹盈,赵军,汤寄予.土木工程学报,2005,38(7),21.
29 Qu J, Zou G, Xia P. Applied Mechanics and Materials,2011,70,189.
30 Chen D, Liu F, Yang F, et al. Construction & Building Materials,2018,177,477.
31 Małyszko L, Kowalska E, Bilko P. Construction & Building Materials,2017,157,1190.
32 Sarfarazi V, Haeri H, Ebneabbasi P, et al. Construction & Building Materials,2018,166,817.
33 Su C D, Li Y, Xiong Z Q. Journal of Building Materials,2014,17(4),586(in Chinese).
苏承东,李艳,熊祖强.建筑材料学报,2014,17(4),586.
34 Leppänen J. International Journal of Impact Engineering,2006,32(11),1828.
35 Kong X, Fang Q, Li Q M, et al. International Journal of Impact Engineering,2017,108,217.
36 Tu Z, Lu Y. International Journal of Impact Engineering,2010,37(10),1072.
37 Kong X, Fang Q, Wu H, et al. International Journal of Impact Enginee-ring,2016,95,61.
38 Chen H, Xu B, Mo Y L, et al. Construction & Building Materials,2018,178,418.
39 Abrishambaf A, Barros J A O, Cunha V M C F. Cement & Concrete Composites,2015,57,153.
40 Yu Y. Chinese Journal of Rock Mechanics and Engineering,2005,24(7),1150(in Chinese).
喻勇.岩石力学与工程学报,2005,24(7),1150.
41 Wang Q Z, Jia X M. Chinese Journal of Rock Mechanics and Engineering,2002,21(9),1285(in Chinese).
王启智,贾学明.岩石力学与工程学报,2002,21(9),1285.
42 Zhang S, Liang Y L, Li D W. Journal of Mining & Safety Engineering,2009,26(4),450(in Chinese).
张盛,梁亚磊,李大伟.采矿与安全工程学报,2009,26(4),450.
43 Du M, Jin L, Li D, et al. Engineering Mechanics,2017,34(9),54(in Chinese).
杜敏,金浏,李冬,等.工程力学,2017,34(9),54.
44 Hoover C G, Bažant Z P. International Journal of Fracture,2014,187(1),133.
45 Hoover C G, Bažant Z P, Vorel J, et al. Engineering Fracture Mechanics,2013,114,92.
46 Weibull W. Journal of Applied Mechanics,1951,18(2),293.
47 Xu Z, Hao H, Li H N. Cement & Concrete Research,2012,42,1475.
48 Rocco C, Guinea G V, Planas J, et al. Materials & Structures,1999,32(6),437.
49 Rocco C, Guinea G V, Planas J, et al. Materials & Structures,1999,32(3),210.
50 Rocco C, Guinea G V, Planas J, et al. Cement & Concrete Research,2001,31(1),73.
51 Tang T. Journal of Testing & Evaluation,1994,22(5),401.
52 Wang Q Z, Jia X M, Kou S Q, et al. International Journal of Rock Mechanics and Mining Sciences,2004,41(2),245.
53 Wang Q Z, Li W, Xie H P. Mechanics of Materials,2009,41(3),252.
54 Ince R. Engineering Fracture Mechanics,2012,82,100.
55 Wan-Wendner L, Wan-Wendner R, Cusatis G. Cement & Concrete Composites,2018,85,67.
56 Gao D Y, Zhao J, Tang J Y. Journal of Building Materials,2004,7(3),295(in Chinese).
高丹盈,赵军,汤寄予.建筑材料学报,2004,7(3),295.
57 Zhou F P, Balendran R V, Jeary A P. Cement & Concrete Research,1998,28(12),1725.
58 Bazant Z P, Kazemi M T, Hasegawa T, et al. ACI Materials Journal,1991,88(3),325.
59 Ince R, Gör M, Eren M E, et al. Strain,2015,51(2),135.
60 Segura-Castillo L, Monte R, De Figueiredo A D. Construction & Building Materials,2018,192,731.
61 An M Z, Yang Z H, Yu Z R, et al. Journal of the China Railway Society,2010,32(1),54(in Chinese).
安明喆,杨志慧,余自若,等.铁道学报,2010,32(1),54.
62 Du R Y, Chen B C, Shen X J. Materials Reports,2016,30(S1),483(in Chinese).
杜任远,陈宝春,沈秀将.材料导报,2016,30(专辑27),483.
63 Denneman E, Visser A T. Materials & Structures,2011,44(8),1441.
64 Wang Z, Ni Y S, Cao J Z, et al. Explosion and Shock Waves,2005,25(6),41(in Chinese).
王政,倪玉山,曹菊珍,等.爆炸与冲击,2005,25(6),41.
65 Li Q M, Meng H. International Journal of Solids & Structures,2003,40(2),343.
66 Toutlemonde F, Rossi P. ACI Materials Journal,1999,96(5),614.
67 Bischoff P H, Perry S H. Materials & Structures,1991,24(6),425.
68 Wang H L, Li Q B. Engineering Mechanics,2007,24(2),105(in Chinese).
王海龙,李庆斌.工程力学,2007,24(2),105.
69 Liniers A D. Materials & Structures,1987,20(2),111.
70 Ren X T, Zhou T Q, Zhong F P, et al. Explosion and Shock Waves,2011,31(5),540(in Chinese).
任兴涛,周听清,钟方平,等.爆炸与冲击,2011,31(5),540.
71 Cao H, Ma Q Y. Journal of Building Materials,2018,21(1),150(in Chinese).
曹海,马芹永.建筑材料学报,2018,21(1),150.
72 Brühwiler E, Wittmann F H. Engineering Fracture Mechanics,1990,35(1),117.
73 Prisco M D, Ferrara L, Lamperti M G L. Materials & Structures,2013,46(11),1893.
74 Tschegg E. German Patent, AT390328,1990.
75 Stanzl-Tschegg S E, Tan D M, Tschegg E K. Wood Science & Technology,1995,29(1),31.
76 Ferrara L, Prisco M D. Journal of Engineering Mechanics,2001,127(7),678.
77 Löfgren I, Stang H, Olesen J F. Materials & Structures,2008,41(1),197.
78 Tschegg E K, Schneemayer A, Merta I, et al. Cement & Concrete Composites,2015,62,195.
79 Brühwiler E, Wittmann F H. Engineering Fracture Mechanics,1990,35(1),117.
80 Kim J K, Kim Y Y. Cement & Concrete Research,1999,29(5),705.
81 Elser M, Tschegg E K, Stanzl-Tschegg S E. Composites Science & Technology,1996,56(8),933.
82 Nemegeer D, Vanbrabant J, Bekaert S A N V, et al. In: International Rilem Workshop on Test and Design Methods for Steel Fibre Reinforced Concrete. Bochum,2003,pp.47.
83 Ferrara L, Faifer M, Muhaxheri M, et al. Materials & Structures,2012,45(4),591.
84 Prisco M D, Lamperti M G L, Lapolla S. In: 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Jeju (Ko-rea),2010,pp.1579.
85 Luong M P. Engineering Fracture Mechanics,1990,35(1),127.
86 Liu L. Industrial Construction,2012,42(S1),577(in Chinese).
刘莉.工业建筑,2012,42(S1),577.
87 Guo D, Su C Y, Peng Z Q, et al. Journal of Building Materials,2018,21(1),41(in Chinese).
郭东,苏春义,彭自强,等.建筑材料学报,2018,21(1),41.
88 Tian W Y, Cheng Y H, Zhou C S, et al. Concrete,2018(1),158(in Chinese).
田文元,成云海,邹成松,等.混凝土,2018(1),158.
89 Pu X C, Wang Z J, Wang C, et al. Journal of Building Structures,2002,23(6),49(in Chinese).
蒲心诚,王志军,王冲,等.建筑结构学报,2002,23(6),49.
90 Sha F, Liang Z L, Chen Q X, et al. Concrete,2008(12),85(in Chinese).
沙峰,梁中林,陈秋喜,等.混凝土,2008(12),85.
91 Jindal A, Ransinchung R N G D. International Journal of Pavement Research & Technology,2018,11,488.
92 Yan S J, Song S M, Zhang L Q. Concrete,2017(8),152(in Chinese).
闫少杰,宋少民,张良奇.混凝土,2017(8),152.
93 Hao W F, He H N. Low Temperature Architecture Technology,2009,31(12),4(in Chinese).
郝维钫,何化南.低温建筑技术,2009,31(12),4.
94 Juki M I, Awang M, Annas M M K, et al. Advanced Materials Research,2013,795,356.
95 Yin J, Zhou S Q. Journal of Changsha Railway University,2001,19(2),25(in Chinese).
尹健,周士琼.长沙铁道学院学报,2001,19(2),25.
96 Akinpelu M A, Odeyemi S O, Olafusi O S, et al. Journal of King Saud University-Engineering Sciences,2019,31(1),19.
97 Li G, Xu Z H, Niu J G. Materials Reports B:Research Papers,2018,32(7),2412(in Chinese).
李革,徐泽华,牛建刚.材料导报:研究篇,2018,32(7),2412.
98 Li C G, Dong C Q, Qin Q J, et al. Materials Reports,2015,29(S1),48(in Chinese).
李春光,董超强,秦前进,等.材料导报,2015,29(专辑25),48.
99 Jiang F, Shi Y L, Zhang H E, et al. Materials Reports B:Research Papers,2018,32(10),3541(in Chinese).
姜丰,史亚龙,张洪恩,等.材料导报:研究篇,2018,32(10),3541.
100 Yan K, Xu H, Shen G, et al. Advances in Materials Science and Engineering,2013,2013(2),1.
101 Oluokun F A, Burdette E G, Deatherage J H. ACI Materials Journal,1991,88(2),115.
102 Kim J K, Han S H, Song Y C. Cement & Concrete Research,2002,32(7),1087.
103 Kim J K, Sang H H, Park Y D, et al. Journal of Materials in Civil Engineering,1998,10(4),244.
104 Mohamed O A, Syed Z I, Najm O F. Procedia Engineering,2016,145,1218.
105 Rashid M A, Mansur M A, Paramasivam P. Journal of Materials in Civil Engineering,2002,14(3),230.
106 Ahmad S H, Shah S P. PCI Journal,1985,30(6),92.
107 ACI Committee 363. State-of-the-art report on high-strength concrete (ACI 363R-92), American Concrete Institute,1992.
108 ACI Committee 318. Building code requirements for structural concrete (ACI 318-99) and commentary (318R-99), American Concrete Institute,1999.
109 Oluokun F A. ACI Materials Journal,1991,88(3),302.
110 Iravani S. ACI Materials Journal,1996,93(5),416.
111 Arioglu N, Girgin Z C, Arioglu E. ACI Materials Journal,2006,103(1),18.
112 Rajabi A M, Moaf F O. Construction & Building Materials,2017,146,485.
113 Zeng L, He M, Zhang M H, et.al. Materials Reports B: Research Papers,2019,33(12),4086(in Chinese).
曾路,何牟,张明华,等.材料导报:研究篇,2019,33(12),4086.
114 Li P P, Yu Q L, Brouwers H J H, et al. Cement & Concrete Research,2019,125,105858.
115 Choi Y, Yuan R L. Cement & Concrete Research,2005,35(8),1587.
[1] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[2] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[3] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[4] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[5] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[6] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[7] 郑山锁, 杨建军, 郑跃, 董立国, 温桂峰, 姬金铭. 锈蚀钢筋混凝土粘结滑移性能综述[J]. 材料导报, 2020, 34(Z2): 221-226.
[8] 余波, 黄俊铭, 万伟伟, 杨绿峰. 混凝土模拟液中钢筋钝化和脱钝过程的量化判别方法[J]. 材料导报, 2020, 34(Z2): 227-232.
[9] 郝哲昕, 钱春香, 周横一, 李进, 吴亚东, 张昆. 清水混凝土外观质量信息采集与分析方法及其工程应用[J]. 材料导报, 2020, 34(Z2): 233-241.
[10] 李崇智, 吴慧华, 牛振山, 曹莹莹. 水泥基渗透结晶防水母料的配制与应用性能[J]. 材料导报, 2020, 34(Z2): 261-264.
[11] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[12] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[13] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[14] 路建宁, 王娟, 林颖菲, 郑开宏, 王海艳. 表面氧化处理对SiC/A356 Al复合材料组织及性能的影响[J]. 材料导报, 2020, 34(Z2): 381-385.
[15] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed