Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4108-4112    https://doi.org/10.11896/cldb.19020085
  金属与金属基复合材料 |
汽车6016铝合金/低碳钢激光焊接头界面组织与性能
罗兵兵1, 张华1, 雷敏1, 冯艳1, 许兰锋2, 刘定军1
1 南昌大学机电工程学院江西省机器人及焊接自动化重点实验室,南昌 330031;
2 江铃汽车股份有限公司,南昌 330001
Laser Welded Joints of Automotive 6016 Aluminum and Low Carbon Steel: Interface Microstructure and Mechanical Properties
LUO Bingbing1, ZHANG Hua1, LEI Min1, FENG Yan1, XU Lanfeng2, LIU Dingjun1
1 Key Laboratory of Robot & Welding Automation of Jiangxi, Nanchang University, Nanchang 330031, China;
2 Jiangling Motors Co., Ltd., Nanchang 330001, China
下载:  全 文 ( PDF ) ( 5469KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 汽车轻量化需求促使铝/钢一体化结构件代替单一钢结构件成为汽车工业的发展趋势。然而,铝与钢之间冶金相容性较差,传统的熔焊方法难以实现二者的有效连接。为了解决这一难题,本研究采用光纤激光器对车用薄板6016铝合金和DC06低碳钢平板试样进行了钢上铝下搭接形式的激光焊接试验。利用光学显微镜(OM)、扫描电子显微镜(SEM)和拉伸试验机等实验设备对铝/钢激光焊接头界面组织和力学性能进行了研究。结果表明,当激光功率(P)为1 000 W、焊接速度(V)为0.05 m/s、离焦量(f)为+1 mm、保护气为高纯氩气且流量为20 L/min时,焊缝中心由大量铁素体和珠光体组成,铝/钢激光焊接头的平均抗拉剪力达到最大,为94.2 N/mm,接头断裂呈韧性和准解理的混合型断裂模式。铝/钢接头界面生成一定的脆硬金属间化合物(IMC),主要由FeAl2、FeAl和FeAl3相组成。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗兵兵
张华
雷敏
冯艳
许兰锋
刘定军
关键词:  激光焊  6016铝合金  低碳钢  界面组织  力学性能    
Abstract: It has become the developing trend that the aluminum/steel integrated structure will replace the single steel structure in automotive industry because of the lightweight demand of automobiles. However, the poor metallurgical compatibility between aluminum and steel makes it hard for conventional welding technique to achieve effective connection between them. For the sake of solving this critical problem, laser welding experiments of automotive 6016 aluminum alloy thin sheets and DC06 low carbon steel were carried out by a fiber laser, in which a steel-on-aluminum overlapped configuration was adopted. Furthermore, the interface microstructure and mechanical properties of Al alloy/steel laser welded joints were investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometer and tensile testing machine. Accor-ding to the experimental results, under the condition that the laser power (P) was 1 000 W, welding speed (V) was 0.05 m/s, defocusing distance (f) was +1 mm, and protective gas was high purity Ar gas with a flow rate of 20 L/min, the weld center Al alloy/steel joint consisted of a large amount of ferrite and pearlite, the Al alloy/steel joint held a maximum average tensile shear strength of 94.2 N/mm, and the joint exhibited a mixed fracture mode of toughness and quasi-cleavage. Meanwhile, a certain amount of brittle intermetallic compounds (IMC) formed at the interface of Al alloy/steel joints, mainly consisting of FeAl2, FeAl, and FeAl3 phases.
Key words:  laser welding    6016 aluminum alloy    low carbon steel    interface microstructure    mechanical properties
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TG456.7  
基金资助: 江西省省级优势科技创新团队项目(20181BCB24001)
通讯作者:  hzhang@ncu.edu.cn   
作者简介:  罗兵兵,硕士研究生,研究方向为机器人激光焊接;张华,博士,教授,博士研究生导师,南昌大学机器人研究所所长。主要从事机器人智能化与焊接自动化技术研究。
引用本文:    
罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
LUO Bingbing, ZHANG Hua, LEI Min, FENG Yan, XU Lanfeng, LIU Dingjun. Laser Welded Joints of Automotive 6016 Aluminum and Low Carbon Steel: Interface Microstructure and Mechanical Properties. Materials Reports, 2020, 34(4): 4108-4112.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020085  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4108
1 Zheng H, Zhao X Y. Forging & Stamping Technology, 2016, 41(2),1(in Chinese).
郑晖, 赵曦雅. 锻压技术, 2016, 41(2),1.
2 Fan Z J, Gui L J, Su R Y. Journal of Automobile Safety and Energy, 2014, 5(1),1(in Chinese).
范子杰, 桂良进, 苏瑞意. 汽车安全与节能学报, 2014, 5(1),1.
3 Dharmendra C, Rao K P, Wilden J, et al. Materials Science and Engineering A, 2010, 528(2011), 1497.
4 Qiao J Y, Shao Y F, Ruan Y, et al. Materials Review B: Research Papers, 2016, 30(12),94(in Chinese).
乔建毅, 邵有发, 阮野, 等. 材料导报: 研究篇, 2016, 30(12),94.
5 Ling Z X, Luo Z, Feng Y Q, et al. Transactions of the China Welding Institution, 2017, 38(2), 101(in Chinese).
凌展翔, 罗震, 冯悦峤, 等. 焊接学报, 2017, 38(2),101.
6 Yang H L, Jin X Z, Xiu T F, et al. Laser Technology, 2016, 40(4),606(in Chinese).
杨洪亮, 金湘中, 修腾飞, 等. 激光技术, 2016, 40(4),606.
7 Farid H, Fadi A F. Journal of Materials Processing Technology, 2015, 225,262.
8 Indhu R, Soundarapandian S, Vijayaraghavan L. Journal of Materials Processing Technology, 2018, https://doi.org/10.1016/j.jmatprotec.2018.05.022.
9 Ma J J, Harooni M, Carlson B, et al. Materials and Design, 2014, 58,390.
10 Kouadri-David A. Materials and Design, 2013, 54,183.
11 Wu M F, Si N C, Chen J. Transactions of Nonferrous Metals Society of China, 2011,21(5), 1035.
12 Kim Y G, Jo B Ji, Kim J S, et al. International Journal of Precision Engineering and Manufacturing, 2017, 18(1),121.
13 Zhang Y Y, Sun D Q, Li H M, et al. Journal of Changchun University of Technology, 2017, 38(1),8(in Chinese).
张月莹, 孙大千, 李洪梅, 等. 长春工业大学学报, 2017, 38(1), 8.
14 Qin G L, Su Y H, Meng X M, et al. International Journal of Advanced Manufacturing Technology, 2015, 78,1917.
15 Yang J, Zhang H, Li Y L. Applied Laser, 2013, 36(5),74(in Chinese).
杨瑾, 张华, 李玉龙. 应用激光, 2013, 36(5),74.
16 Li J X, Li H, Huang C Q, et al. International Journal of Advanced Ma-nufacturing Technology, 2017, 91,1057.
17 Lu Z Y, Huang P F, Gao W N, et al. Frontiers of Mechanical Enginee-ring in China, 2009, 4(2),134.
18 Pan F, Cui L, Qian W, et al. Acta Metallurgica Cinica, 2016, 52(11),1388(in Chinese).
潘峰, 崔丽, 钱伟, 等. 金属学报, 2016, 52(11),1388.
19 Zhou D W, Liu J S, Lu Y Z, et al. Optics and Laser Technology, 2017, 94,171.
20 Zhang M J, Chen G Y, Li S C, et al. Chinese Journal of Lasers, 2011, 38(6),0603010(in Chinese).
张明军, 陈根余, 李时春, 等. 中国激光, 2011, 38(6), 0603010
21 Wang X H, Gu X Y, Sun D Q. Journal of Mechanical Engineering, 2017, 53(4),26(in Chinese).
王晓虹, 谷晓燕, 孙大千. 机械工程学报, 2017, 53(4), 26.
22 Ezazi M A, Yusof F, Sarhan A A D, et al. Materials and Design, 2015, 87,105.
23 Dharmendra C, Rao K P, Wilden J, et al. Materials Science and Engineering A, 2011, 528 (3), 1497.
24 Yu S R, Jiang K, Fan D. Journal of Mechanical Engineering, 2014, 50(12), 83(in Chinese).
余淑荣, 蒋锴, 樊丁. 机械工程学报, 2014, 50(12), 83.
25 Torkamany M J, Tahamtan S, Sabbaghzadeh J. Materials and Design, 2010, 31,458.
26 Zhou D W, Qiao X J, Zhang L J, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(3), 678(in Chinese).
周惦武, 乔小杰, 张丽娟, 等. 中国有色金属学报, 2014, 24(3), 678.
27 Sierra G, Peyre P, Deschaux-Beaume F, et al. Materials Science and Engineering A, 2007, 447,197.
28 Cui L, Chen B X, Chen L, et al. Journal of Materials Processing Technology, 2018, 256, 87
[1] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[2] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[3] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[4] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[5] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[6] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[7] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[8] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[9] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[10] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[11] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[12] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[13] 吴懿萍, 何臻毅, 周志纲, 熊汉青, 贾寓真, 李承波, 李国锋. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(Z2): 394-397.
[14] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[15] 杨林, 熊建坤, 余勇, 文仲波, 聂甫恒, 杨东, 王东力, 冯雨来. 大热输入对焊条电弧焊低合金钢力学性能的影响[J]. 材料导报, 2019, 33(Z2): 424-427.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed