Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 386-389    https://doi.org/10.11896/cldb.201903002
  材料与可持续发展(二)--材料绿色制造与加工* |
钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响
温丽1, 薛松柏1, 马超力1, 龙伟民2, 钟素娟2
1 南京航空航天大学材料科学与技术学院,南京 210016
2 郑州机械研究所有限公司新型钎焊材料与技术国家重点实验室,郑州 450001
Impact of Brazing Temperature on Microstructure and Mechanical Properties ofNi200 Alloys Joints by Vacuum Brazing Using Nanosilver Pastes
WEN Li1, XUE Songbai1, MA Chaoli1, LONG Weimin2, ZHONG Sujuan2
1 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
2 State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou 450001
下载:  全 文 ( PDF ) ( 2224KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用改进的多元醇法制备纳米银线焊膏,制得的银焊膏性质稳定,微观形貌多呈线状,通过XRD和DSC对其成分和熔点进行了测试分析。随后采用制得的银焊膏对镍合金片(Ni200)进行真空钎焊试验,分析钎焊温度对钎焊接头显微组织和力学性能的影响规律。结果表明,增加钎焊温度可以提高钎焊接头内烧结组织的致密度,促进界面处原子间的互扩散作用,从而提高钎焊接头的抗剪强度。但温度过高时,接头性能略有下降。钎焊接头的抗剪强度在850 ℃时达到最大值42.5 MPa,较300 ℃时的抗剪强度增加了约912%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温丽
薛松柏
马超力
龙伟民
钟素娟
关键词:  纳米银焊膏  真空钎焊  显微组织  力学性能    
Abstract: The nanosilver solder pastes prepared by improved polyol method exhibited favorable stability and linear micro-morphology mostly. The composition and melting point of the prepared nanosilver pastes were measured by XRD and DSC, respectively. Subsequently, nickel(Ni200) alloys were brazed in vacuum with the prepared nanosliver paste, and the impact of brazing temperature on the microstructure and properties of brazed joint were investigated. It can be found in the results that the sintering temperature increase is beneficial to the density improving of the sintered structure in the joint and the interdiffusion between the atoms at the interface, thus enhances the shear strength of the brazed joints. Howe-ver, excessively high temperature will lead to a slight drop in the property of joints. The brazed joints present a maximum shear strength of 42.5 MPa at 850 ℃, which is about 912% higher than that at 300 ℃.
Key words:  nanosilver paste    vacuum brazing    microstructure    mechanical property
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TG425.2  
基金资助: 国家自然科学基金(51675269);新型钎焊材料与技术国家重点实验室开放课题基金(SKLABFMT201704)
作者简介:  温丽,2017年6月毕业于南京航空航天大学,获得工学学士学位。薛松柏,南京航空航天大学材料科学与技术学院二级教授、研究员、博士研究生导师,享受政府特殊津贴专家。长期以来专注于焊接材料及焊接工艺的研究,制定五项国家标准、五项机械工业部行业标准并发布实施;主持完成了三十多项国家、部、市课题的研究,共取得主要科研成果三十余项。xuesb@nuaa.edu.cn
引用本文:    
温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
WEN Li, XUE Songbai, MA Chaoli, LONG Weimin, ZHONG Sujuan. Impact of Brazing Temperature on Microstructure and Mechanical Properties ofNi200 Alloys Joints by Vacuum Brazing Using Nanosilver Pastes. Materials Reports, 2019, 33(3): 386-389.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903002  或          http://www.mater-rep.com/CN/Y2019/V33/I3/386
1 Li Y J, Xia C Z, Shi L. Modern Welding Technology,2010,7(28),1(in Chinese).
李亚江,夏春智,石磊.现代焊接,2010,7(28),1.
2 Tang Z J, Guo T M, Fu Y, et al. Metal World,2014(1),36(in Chinese).
唐中杰,郭铁明,付迎,等.金属世界,2014(1),36.
3 Wang G, Zhang B G, He J S, et al. Transactions of the China Welding Institution,2008,29(7),89(in Chinese).
王刚,张秉刚,何景山,等.焊接学报,2008,29(7),89.
4 Tang Z Z, Chen P Y, Wu W. Transactions of the China Welding Institution,2008,29(1),109(in Chinese).
唐正柱,陈佩寅,吴伟.焊接学报,2008,29(1),109.
5 Cox D C, Roebuck B, Rae C M F, et al. Materials Science & Technology,2003,19(4),440.
6 Herring C. Journal of Applied Physics,1950,21(4),301.
7 Akada Y, Tatsumi H, Yamaguchi T, et al. Materials Transactions,2008,49(7),1537.
8 Yang X. Study on preparation and performance of low temperature sintered silver nanoparticle paste. Master’s thesis, Harbin Institute of Technology, China,2016(in Chinese).
杨雪.低温烧结纳米银膏的制备及其性能研究.硕士学位论文,哈尔滨工业大学,2016.
9 Xiang H Y, Gao G M, Huang P D, et al. Materials Reviews,2016,30(z1),64(in Chinese).
向红印,高官明,黄培德,等.材料导报,2016,30(z1),64.
10 Yang C X, Li X, Kong Y F, et al. Chinese Journal of Luminescence,2016(1),94(in Chinese).
杨呈祥,李欣,孔亚飞,等.发光学报,2016(1),94.
11 Paknejad S A, Mannan S H. Microelectronics Reliability,2017,70,1.
12 Alarifi H, Hu A, Yavuz M, et al. Journal of Electronic Materials,2011,40(6),1394.
13 Hausner S, Weis S, Wagner G. DVS-Berichte,2016,325,278.
14 Coskun S, Aksoy B, Unalan H E. Crystal Growth & Design,2011,11(11),4963.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed