Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 375-385    https://doi.org/10.11896/cldb.201903001
  材料与可持续发展(二)--材料绿色制造与加工* |
纳米碳材料的辐射改性及其应用进展
代培1, 马慧玲1, 矫阳1, 翟茂林2, 曾心苗1
1 北京市射线应用研究中心,辐射新材料北京市重点实验室,北京 100015
2 北京大学化学与分子工程学院,放射化学与辐射化学重点学科实验室,北京 100871
Radiation Modification of Carbon Nanomaterials and Their Application Progress
DAI Pei1, MA Huiling1, JIAO Yang1, ZHAI Maolin2, ZENG Xinmiao1
1 Beijing Key Laboratory of Radiation Advanced Materials, Beijing Research Center for Radiation Application, Beijing 100015
2 Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871
下载:  全 文 ( PDF ) ( 3471KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳材料是自然界中与人类关系最为密切的重要材料之一,伴随着纳米科技的发展,具有纳米结构的功能碳材料的研究逐渐深入,已经出现了石墨烯、碳纳米管等性能优异的纳米碳材料。纳米碳材料具有机械强度高、导热导电能力强等诸多优点以及环境友好特性,能够满足绿色化学和可持续性发展的要求,因而其在复合材料中的应用成为相关领域的研究热点。纳米碳材料的引入可以显著提高复合材料的性能,并且还可以赋予材料新的性能,其在功能复合材料方面有良好的应用前景。
然而,由于纳米碳材料自身的结构特点,其在溶剂和聚合物基体中的分散性、相容性和稳定性较差,这一直阻碍着其性能在复合材料中的发挥,甚至可能导致材料的整体性能降低。因此,提高纳米碳材料的分散能力和使用性能一直是研究的难点和热点。通过化学的方法提高纳米碳材料的分散能力,操作过程复杂,生产成本增加,且化学品试剂大多具有很强的毒性。近年来,纳米碳材料的辐射改性受到各界广泛的重视,利用辐射技术制备和官能化修饰纳米碳材料,可以显著提高纳米碳材料的分散能力和与基体的相容性。
辐射刻蚀和还原技术用于纳米碳材料的制备时,可对其结构进行设计,例如辐射制备短切碳纳米管,降低了碳纳米管的长度,可有效提高分散能力。利用高能射线还可将氧化石墨烯进行还原,提供简单高效制备石墨烯的新方法和新思路。辐射接枝可用于纳米碳材料的表面修饰,例如在碳纳米管或石墨烯表面接枝聚合含碳碳双键的酯和芳香类聚合物,提高了纳米碳材料在溶剂和聚合物基体中的分散性能,有助于制备各种高性能功能材料。
本文综述了近年来辐射技术在碳纳米管、氧化石墨烯及碳纳米纤维等材料改性及其应用方面的研究进展,总结了这三种纳米碳材料的优异性能及其复合材料在生物医药、能源、智能材料等领域的最新研究进展,分析了辐射改性纳米碳材料的优势,并对今后辐射技术和纳米碳材料相结合的研究方向进行了展望。随着对纳米碳材料辐射改性的研究和产业化的不断深入,分散性能优异的纳米碳材料有望实现大规模低成本的连续批量生产,未来在功能化和高性能化复合材料等领域的应用也将会更加广阔。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代培
马慧玲
矫阳
翟茂林
曾心苗
关键词:  辐射改性  纳米碳材料  碳纳米管  石墨烯  碳纳米纤维    
Abstract: Carbon material is one of the most important material in nature, possessing closest relationship with human beings. With the development of nano science and technology, intensive studies have been carried out on the functional carbon materials with nanostructure, and graphene, carbon nanotube and other carbon nanomaterials with excellent performances have emerged. The carbon nanomaterials feature mechanical strength, thermal and electrical conductivity, and enviro nment-friendliness, which can satisfy the requirements of green chemistry and sustainable development. Accordingly, its application in composite materials has become a research focus in related fields. The incorporation of carbon nanomaterials can significantly improve the properties of composite materials, and may even endow the composite materials with new properties. Therefore, carbon nanomaterials exhibit great application prospect in the fields of advanced functional materials.
However, suffering from their own structural defect, carbon nanomaterials present poor dispersion, compatibility and stability in solvent and polymer matrix, which blocks the exerting of performance of carbon nanomaterials, and may even leads to the degradation of the overall properties of composite materials. Consequently, optimizing the dispersibility and performance of carbon nanomaterials has always been a difficult and hot research topic. Chemical method can be adopted to optimize the dispersibility of carbon nanomaterials, while its operation process is complicated with high production cost, and most of the chemical reagents show strong toxicity. In recent years, the radiation modification of carbon nanomaterials has received extensive attention. The preparation and functionalization of carbon nanomaterials by radiation technology can significantly improve the dispersibility and compatibility with the matrix of carbon nanomaterials.
Radiation etching and reduction are simple and efficient methods to prepare carbon nanomaterials, by which the structure of carbon nanomate-rials can be designed. For example, the short cut carbon nanotubes can be prepared by radiation, the obtained carbon nanotubes possess reduced length and improved dispersibility. Moreover, The graphene oxide can also be reduced by high energy ray, which provides a new method and new idea for the preparation of graphene with simple and high efficiency. Radiation grafting may be employed for surface modification of carbon nanomaterials. For instance, the graft polymerization of ester and aromatic polymers containing carbon and carbon double bonds on the surface of carbon nanotubes or graphene improves the dispersion properties of carbon nanomaterials in solvent and polymer matrix, which is helpful to the preparation of various high-performance functional materials.
In this article, recent advances in radiation modification and application of carbon nanotubes, graphene oxide and carbon nanofibers are reviewed. The excellent properties of these three kinds of carbon nanomaterials and the latest progress of their composite materials in biotechnology and medicine, smart material and energy fields are summarized. The advantages of radiation modified carbon nanomaterials are analyzed, and the future research direction of combining radiation technology with carbon nanomaterials is proposed. With the development of research on radiation modification of carbon nanomaterials, the carbon nanomaterials with good dispersion quality are expected to achieve large-scale and low-cost continuous mass production. In the future, there will be more extensive application prospects of functional carbon nanomaterial composites with high performances.
Key words:  radiation modification    carbon nanomaterial    carbon nanotube    graphene    carbon nanofiber
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  O635  
基金资助: 中国博士后科学基金(2018M631377);国家自然科学基金(11505011;11405168)
作者简介:  代培,2016年12月毕业于北京化工大学,获得理学博士学位。现在北京市射线应用研究中心从事博士后研究工作。翟茂林,教授,博士生导师。1999年获得北京大学理学博士学位,2008—2009年,日本原子能研究机构特聘研究员(JAEA Fellow)。曾心苗,研究员,现任北京市射线应用研究中心副主任,研发中心主任,北京市科学技术研究院“辐射新材料重点实验室”主任,“首都辐射与新材料研究中心”学委会副主任,中国辐射研究与辐射工艺学会常务理事,中国核学会核技术应用分会常务理事,中国同位素与辐射行业协会委员;长期从事科研开发和项目管理,具有大型科研项目的管理与运作能力。主要研究方向为防辐射屏蔽材料的研究、吸隔声等功能高分子材料的研究以及高分子材料的辐射改性研究等。sherry_0282_cn@sina.com
引用本文:    
代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
DAI Pei, MA Huiling, JIAO Yang, ZHAI Maolin, ZENG Xinmiao. Radiation Modification of Carbon Nanomaterials and Their Application Progress. Materials Reports, 2019, 33(3): 375-385.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903001  或          http://www.mater-rep.com/CN/Y2019/V33/I3/375
1 Sun Z K, Liu Y, Li B, et al. ACS Nano,2013,7(10),8706.
2 Yin P T, Shah S, Chhowalla M, et al. Chemical Reviews,2015,115(7),2483.
3 Cha C Y, Shin S R, Annabi N, et al. ACS Nano,2013,7(4),2891.
4 Baughman R H, Zakhidov A, Heer W A. Science’s Compass,2002,297(2),787.
5 Jariwala D, Sangwan V K, Lauhon L J, et al. Chemical Society Reviews,2013,42(7),2824.
6 Zhang B T, Zheng X X, Li H F, et al. Analytica Chimica Acta,2013,784(19),1.
7 Bashar M M, Siddiquee M A B, Khan M A. Carbohydrate Polymers,2015,120,92.
8 Lijima S. Nature,1991,354(6348),56.
9 Dai H. Surface Science,2002,500(1-3),218.
10 Novoselov K S, Geim A K, Morozov S V, et al. Science,2004,306(5696),666.
11 Wang L, Pan Y. Carbon,2011,49(5),1806.
12 Park J, Yan M. Accounts of Chemical Research,2013,46(1),181.
13 Wu X, Li F, Wu W, et al. Vacuum,2014,101(3),53.
14 Hummers J R W S, Offeman R E. Journal of the American Chemical So-ciety,1958,80(6),1339.
15 Qin X, Xie Z, Xie Q. Electronic Components and Materials,2014,33(3),1(in Chinese).
覃信茂,谢卓成,谢泉.电子元件与材料,2014,33(3),1.
16 Stankovich S, Dikin D A, Piner R D, et al. Carbon,2007,45(7),1558.
17 Tang X Z, Cao Z W, Zhang H B, et al. Chem Commun,2011,47(11),3084.
18 Baek J B, Lyons C B, Tan L S. Macromolecules,2004,37(22),8278.
19 Tibbetts G G, Lake M L, Strong K L, et al. Composites Science and Technology,2007,67(7),1709.
20 Jong K P, Geus J W. Catalysis Reviews-Science and Engineering,2000,42(4),481.
21 Evora M C, Klosterman D, Lafdi K, et al. Carbon,2010,48(7),2037.
22 Brüser V, Heintze M, Brandl W, et al. Diamond and Related Materials,2004,13(4),1177.
23 Rasheed A, Dadmun M D, Britt P F. Journal of Polymer Science Part B: Polymer Physics,2010,44(21),3053.
24 Liu J, Rinzler A G, Dai H J, et al. Science,1998,280(5367),1253.
25 Coleman J N,Khan U,Gun’ko Y K.Advanced Materials,2006,18(6),689.
26 Gu Z, Peng H, Hauge R H, et al. Nano Letters,2002,2(9),1009.
27 Kang Z, Wang E, Mao B, et al. Materials Letters,2006,60(17-18),2266.
28 Kukovecz á, Kanyó T, Kónya Z, et al. Carbon,2005,43(5),994.
29 Tsang S C,Chen Y K,Harris P J F,et al.Nature,1994,372(6502),159.
30 Sun H, Dai Y, Li J, et al. Materials Review B: Research Papers,2010,24(7),22(in Chinese).
孙浩,戴耀东,李江苏,等.材料导报:研究篇,2010,24(7),22.
31 Sun H, Yu J, Ma N, et al. Atomic Energy Science and Technology,2011,45(4),474(in Chinese).
孙浩,余健开,马南茹,等.原子能学技术,2011,45(4),474.
32 Xu S, Liu W, Li Z, et al. New Chemical Materials,2008,36(3),44(in Chinese).
许书珍,刘文涛,李中原,等.化工新型材料,2008,36(3),44.
33 Wang C, Chen Y, Zhuo K, et al. Chemical Communications,2013,49(32),3336.
34 Zhang Y, Ma H L, Zhang Q, et al. Journal of Materials Chemistry,2012,22(26),13064.
35 Li J, Zhang B, Li L, et al. Radiation Physics and Chemistry,2014,94(1),80.
36 Ma H L, Zhang L, Zhang Y W, et al. Acta Physico-Chimica Sinica,2015,31(10),2016(in Chinese).
马慧玲,张龙,张有为,等.物理化学学报,2015,31(10),2016.
37 Galal A, Amin K M, Atta N F, et al. Journal of Alloys and Compounds,2016,695,638.
38 Wang W K, Wu Y H, Jiang Z W, et al. Applied Surface Science,2018,427,1144.
39 Zhang Y, Chen L, Xu Z, et al. Materials Letters,2012,89,226.
40 Zhang Y, Shi J, Chen C, et al. Physica E: Low-dimensional Systems and Nanostructures,2018,97,151.
41 Dumée L F, Feng C, He L, et al. Applied Surface Science,2014,322,126.
42 Chen L, Xu Z, Li J, et al. Materials Letters,2011,65,1229.
43 Xu Z, Chen L, Li J, et al. Applied Physics Letters,2011,98,183112.
44 Marković Z, Jovanović S, Milosavljevicć M, et al. Graphene Science Handbook: Fabrication Methods, Taylor & Francis Press, UK,2016.
45 Xu Z, Wang R, Wang C, et al. e-Polymers,2011,11,634.
46 Guo J, Li Y, Wu S, et al. Nanotechnology,2005,16(10),2385.
47 Xu H, Wang X, Zhang Y, et al. Chemistry of Materials,2006,18(13),2929.
48 陈仕谋,吴国忠,刘耀东.2005年全国高分子学术论文报告会,北京,2005,511.
49 Zhang B, Xie S, Wei R, et al. Science China-Chemistry,2016,59(3),303.
50 Lee C, Baik S. Carbon,2010,48(8),2192.
51 He Y, Li J, Luo K, et al. Industrial and Engineering Chemistry Research,2016,55(13),3775.
52 Zeng L. Ome Information,2009,26(9),12(in Chinese).
曾乐勇.光机电信息,2009,26(9),12.
53 Ghafoor B, Mehmood M S, Shahid U, et al. Radiation Physics and Che-mistry,2016,125,145.
54 Lee K Y, Kim K Y. Polymer Degradation and Stability,2008,93(7),1290.
55 Chen L, Xu Z, Li J, et al. Journal of Materials Chemistry,2012,22(27),13460.
56 Xu Z, Chen L, Zhou B, et al. RSC Advances,2013,3(27),10579.
57 Liu X, Jiang S, Huang W, et al. Kerntechnik,2014,79(3),216.
58 Fu X, Zhang Y, Cao P, et al. Radiation Physics and Chemistry,2016,123,79.
59 Zhang B, Zhang Y, Peng C, et al. Nanoscale,2012,4(5),1742.
60 张伯武,张玉洁,韦荣茂,等.2011年全国高分子学术论文报告会.大连,2011,784.
61 蔡晓生,崔雨,李久强,等.中国化学会第30届学术年会,大连,2016.
62 Chen L, Li X, Wang L, et al. Polymer Composites,2017,37(1),236.
63 Xie L, Duan G, Wang W, et al. Industrial and Engineering Chemistry Research,2016,55(29),8123.
64 Pitt W G, Jack D R, Zhao Y, et al. Journal of Biomaterials Science Polymer Edition,2012,23(1-4),527.
65 Liu J, Chen C, He C, et al. ACS Nano,2012,6(9),8194.
66 Lee S, Lee H, Sim J H, et al. Macromolecular Research,2014,22(2),165.
67 Zhang Z, Liu Y, Huang Y, et al. Journal of Composites Technology and Research,2002,62(3),331.
68 Evora M C, Araujo J R, Ferreira E H M, et al. Applied Surface Science,2015,335,78.
69 He F, Li R M. Hi-Tech Fiber & Application,2006,31(6),5(in Chinese).
贺福,李润民.高科技纤维与应用,2006,31(6),5.
70 He F, Li R M. Hi-Tech Fiber & Application,2007,32(1),8(in Chinese).
贺福,李润民.高科技纤维与应用,2007,32(1),8.
71 Zhao M Q, Zhang Q, Huang J Q, et al. Carbon,2013,54(2),403.
72 Chen M, Tao T, Zhang L, et al. Chemical Communications,2013,49(16),1612.
73 Ma H L, Zhang L, Zhang Y, et al. Radiation Physics and Chemistry,2016,118,21.
74 Shi Y, Xiong D, Li J, et al. Journal of Physical Chemistry C,2016,120(34),19442.
75 Hwang Y, Kim M, Kim J. Journal of Materials Science,2013,48(20),7011.
76 Chen C Y, Fu M J, Tsai C Y, et al. Journal of Magnetism and Magnetic Materials,2014,367,47.
77 Huang Z, Li J, Chen Q, et al. Materials Chemistry and Physics,2009,114(1),33.
78 Yang C, Song W, Zhang H, et al. Nuclear Techniquse,2011,34(7),517(in Chinese).
杨明成,宋卫东,张宏娜,等.核技术,2011,34(7),517.
79 Zhao J, Deng B, Lv M, et al. Advanced Healthcare Materials,2013,2(9),1259.
80 Silambarasan D, Iyakutti K, Asokan K, et al. Solid State Physics,2015,1665(1),339.
81 Xu Z, Chen L, Liu L, et al. Carbon,2011,49(1),350.
82 Silambarasan D, Surya V J, Iyakutti K, et al. Applied Surface Science,2017,418,49.
83 Zhang Q, Zhang Y, Gao Z, et al. Journal of Materials Chemistry C,2013,1(2),321.
84 Cai X, Zhang Q, Wang S, et al. Journal of Materials Science,2014,49(16),5667.
85 Cao P, Hu Y, Zhang Y, et al. Acta Physico-Chimica Sinica,2017,33(12),2542(in Chinese).
曹朋飞,胡杨,张有为,等.物理化学学报,2017,33(12),2542.
86 Zhu C H, Lu Y, Peng J, et al. Advanced Functional Materials,2012,22(19),4017.
87 Basfar A A, Lotfy S. Radiation Physics and Chemistry,2015,106,376.
88 Shahriary L, Ghourchian H, Athawale A A. Journal of Nanotechnology,2014,2014(26),1.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[4] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[7] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[8] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[9] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[10] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[11] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[12] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[13] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[14] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[15] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed