Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 923-926    https://doi.org/10.11896/cldb.201906002
  无机非金属及其复合材料 |
氧化亚锰的制备及储镁电化学性能
朱佳佳1, 黄斌1, 李延伟1, 陈权启1, 李庆奎2, 杨建文1
1 桂林理工大学化学与生物工程学院,桂林 541004
2 郑州大学材料科学与工程学院,郑州 450001
Synthesis of Manganous Oxide and Its Electrochemical Properties for Magnesium Storage
ZHU Jiajia1, HUANG Bin1, LI Yanwei1, CHEN Quanqi1, LI Qingkui2, YANG Jianwen1
1 College of Chemistry and Bioengineering,Guilin University of Technology,Guilin 541004
2 College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001
下载:  全 文 ( PDF ) ( 2157KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 关于镁离子电池负极材料的研究非常有限。为探究镁离子电池负极材料氧化亚锰的制备工艺及其储镁性能,本实验采用草酸盐热解法制备氧化亚锰,借助TG、XRD、SEM、电化学测量等手段初步探讨了氧化亚锰制备温度、粒径、形貌等特征对其电化学储镁性能的影响。结果表明:草酸亚锰在400 ℃以上热解生成面心立方结构氧化亚锰;氧化亚锰负极材料在Mg(AlCl2EtBu)2/THF电解液中具有明显的赝电容特征;随着制备温度的升高,其一次颗粒由纳米尺寸逐渐长大为粒径为500 nm~2 μm的晶体,并导致其比容量下降;400 ℃下制得的纳米氧化亚锰(粒径约30~50 nm)具有较明显的电池特性,其初始比容量为39.6 mAh·g-1,50次充放电循环后比容量为19.0 mAh·g-1;其电化学储镁性能可以通过纳米化、改善电子导电性和表面膜性能等措施进行改进。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱佳佳
黄斌
李延伟
陈权启
李庆奎
杨建文
关键词:  氧化亚锰  负极材料  储镁  电化学性能    
Abstract: Anode material for magnesium ion battery is rarely studied. Aiming at investigating the preparation parameters and magnesium storage properties of manganous oxide as negative electrode material for magnesium ion battery, the manganous oxide was prepared by oxalate pyrolysis, and the effects of temperature, particle size and morphology on the electrochemical properties of magnesium storage were preliminarily analyzed by TG, XRD, SEM and electrochemical measurements in this study. The results showed that the manganous oxide with face-centered cubic structure could be obtained by pyrolysis of manganese oxalate over 400 ℃, clear pseudocapacitor characterization of manganous oxide anode materials could be found in Mg (AlCl2EtBu)2/THF electrolyte. With increasing preparation temperature, the primary particles grew from nanometer size to crystal with particle size of 500 nm to 2 μm, which resulted in the drop of specific capacity. The nano-manganous oxide (particle size of about 30—50 nm) prepared at 400 ℃ exhibited more notable battery characteristics than other samples, with the initial specific capacity of about 39.6 mAh·g-1, and the cyclic specific capacity of 19.0 mAh·g-1 after 50 charging and discharging cycles. The electrochemical properties of manganous oxide for magnesium storage can be enhanced by nanocrystllization, improving electronic conductivity and optimizing surface properties.
Key words:  manganous oxide    anode material    magnesium storage    electrochemical property
                    发布日期:  2019-04-03
ZTFLH:  TM912  
基金资助: 国家自然科学基金项目(51764012);广西自然科学基金项目(2017GXNSFAA198230);广西电磁化学功能物质重点实验室项目(EMFM20161105)
作者简介:  朱佳佳,2018年6月毕业于桂林理工大学,获得工程硕士学位。杨建文,桂林理工大学化学与生物工程学院研究员,硕士研究生导师。
引用本文:    
朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
ZHU Jiajia, HUANG Bin, LI Yanwei, CHEN Quanqi, LI Qingkui, YANG Jianwen. Synthesis of Manganous Oxide and Its Electrochemical Properties for Magnesium Storage. Materials Reports, 2019, 33(6): 923-926.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906002  或          http://www.mater-rep.com/CN/Y2019/V33/I6/923
1 Lin D, Liu Y, Cui Y. Nature Nanotechnology,2017,12(3),194.
2 Kim J S, Par J, Park J W, et al. Electrochimica Acta,2013,92(1),427.
3 Muldoon J, Bucur C B, Gregory T. Angewandte Chemie International Edition,2017,56(40),12064.
4 Shao Y, Gu M, Li X, et al. Nano Letters,2014,14(1),255.
5 Wu N, Yang Z Z, Yao H R, et al. Angewandte Chemie,2015,54(19),5757.
6 Saha P, Datta M K, Velikokhatnyi O I, et al. Science,2014,66,1.
7 Liebenow C. Journal of Applied Electrochemistry,1997,27(2),221.
8 Lin J H, Jing X P, et al. Inorganic material chemistry, Peking University Press, China,2006(in Chinese).
林建华,荆西平,等.无机材料化学,北京大学出版社,2006.
9 Wang T, Zhou J H. Guangzhou Chemical Industry,2016,44(21),10(in Chinese).
王涛,周菊红.广州化工,2016,44(21),10.
10 Shi Y, Yang J W, Li D, et al. Materials for Mechanical Engineering,2012,36(6),27(in Chinese).
石阳,杨建文,李丹,等.机械工程材料,2012,36(6),27.
11 Chen Y Z. Preparation of ferrous oxide electrode materials and study on the electric capacity characteristic. Master’s Thesis, Guilin University of Technology,China,2010(in Chinese).
陈永珍.氧化亚铁电极材料制备及其超容特性研究. 硕士学位论文, 桂林理工大学,2010.
12 Platteau C, Lefebvre J, Affouard F, et al. Acta Crystallographica,2010,60(4),453.
13 Jia Z, Dai C S, Chen L. Electrochemical measurement methods, Chemical Industry Presss, China,2007(in Chinese).
贾铮,戴长松,陈玲.电化学测量方法,化学工业出版社,2007.
14 Manjuladevi R, Thamilselvan M, Selvasekarapandian S, et al. Solid State Ionics,2017,308,90.
15 Shahid Rasul, Shinya Suzuki, Shu Yamaguchi, et al. Solid State Ionics,2012,225,542.
16 Su L, Zhong Y, Wei J, et al. RSC Advances,2013,3(23),9035.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[4] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[5] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[6] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[7] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[8] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[9] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[10] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[11] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[12] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[13] 张鸿宇,李治应,曾蓉,. 高效温和制备纳米片状β-Co(OH)2用于超级电容器电极[J]. 材料导报编辑部, 2017, 31(22): 15-20.
[14] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[15] 张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed