Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3325-3331    https://doi.org/10.11896/j.issn.1005-023X.2018.19.006
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响
马志鸣,肖仁贵,廖霞,柯翔
贵州大学化学与化工学院,贵阳 550025
Preparation of the Lameller Nanostructure Iron Phosphate and Its Effect on the Electrochemical Performance of Lithium Iron Phosphate
MA Zhiming, XIAO Rengui, LIAO Xia, KE Xiang
College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025
下载:  全 文 ( PDF ) ( 2159KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用液相反应结晶法,在磷源及铁源中添加NaAlO2,利用在结晶过程中生成的Al(OH)3胶体对结晶面的作用,合成出具有片层纳米结构纺锤体状磷酸铁前驱体,并通过高温固相法进一步制备成磷酸铁锂。采用XRD、FT-IR、SEM、TEM、比表面及孔隙率分析、激光粒度分析和电化学性能测试等手段对样品进行表征分析。结果表明,由具有片层纳米结构的磷酸铁前驱体制备的磷酸铁锂比由无片层纳米结构的磷酸铁前驱体制备的磷酸铁锂在0.1C下的首次放电容量提升了20%,达到151.48 mAh/g,电极电荷转移电阻降低了约75%,仅为27.23 Ω;0.1C倍率下循环50次后容量保持率可达96%。同时,对Al(OH)3胶体影响片层纳米结构磷酸铁生成机制进行了分析和讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马志鸣
肖仁贵
廖霞
柯翔
关键词:  片层纳米结构磷酸铁  磷酸铁锂  电化学性能    
Abstract: Using liquid phase reactive crystallization, NaAlO2 was added to phosphorus source and iron source and the lamellar nanostructure of spindle shaped iron phosphate precursor was synthesized by the effect of Al(OH)3 colloid on the crystal surface during crystallization. It was used to prepare LiFePO4 through high temperature solid state method. The samples were characterized by means of XRD, FT-IR, SEM, TEM, analysis of BET surface area and porosity, laser particle size analyzer and electrochemical performance test. The results showed that the initial discharge capacity of the LiFePO4 that prepared by the lameller nanostructure FePO4 precursor at 0.1C increased by 20%, reaching 151.48 mAh/g, and the electrode charge transfer resistance was reduced by 75%, just 27.23 Ω, compared with the LiFePO4 that prepared by non lameller nanostructure FePO4, and the retention rate of capacity reached 96% after 50 cycles at 0.1C rate. Meanwhile, the mechanism of Al(OH)3 colloid affecting the formation of lamellar nanostructured iron phosphate was analyzed and discussed.
Key words:  lameller nanostructure iron phosphate    lithium iron phosphate    electrochemical properties
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TM911  
基金资助: 贵州省科技厅工业攻关项目(黔科合GY字[2012]3024)
作者简介:  马志鸣:男,1993年生,硕士研究生,主要研究方向为锂离子电池 E-mail:827463108@qq.com;肖仁贵:通信作者,男 1969年生,博士,教授,主要从事锂离子电池正极材料和电化学腐蚀铝箔研究 E-mail:rgxiao@gzu.edu.cn;
引用本文:    
马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
MA Zhiming, XIAO Rengui, LIAO Xia, KE Xiang. Preparation of the Lameller Nanostructure Iron Phosphate and Its Effect on the Electrochemical Performance of Lithium Iron Phosphate. Materials Reports, 2018, 32(19): 3325-3331.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.006  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3325
1 Padhi A K. Goodenough J B D. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].Journal of the Electrochemical Society,1997,144(4):1188.
2 Barker J, Pynenburg R, Koksbang R, et al. An electrochemical investingation into the lithium insertion properties of LixCoO2[J].Electrochim Acta,1996,41(15):2481.
3 Gao Y, Dahn J R. The high temperature phase diagram of Li1+xMn2-xO4 and its implications[J].Journal of the Electrochemical Society,1996,143(6):1783.
4 Chen D J. Promising cathode material LiNiO2 for Li-ion batterise[J].Battery Bimonthly,1997(5):234(in Chinese).
陈德钧.锂离子电池有希望的阴极材料LiNiO2[J].电池,1997(5):234.
5 Du Y C, Hua Z, Liang F, et al. Synthesis of lithium iron phosphate cathode material by liquid state[J].Method Progress in Chemistry,2017,29(1):137(in Chinese).
杜远超,华政,梁风,等.液相法合成磷酸铁锂正极材料[J].化学进展,2017,29(1):137.
6 Park O K, Cho Y, Lee S, et al. Who will drive electric vehicles,olivine or spinel [J].Energy & Environmental Science,2011,4:1621.
7 Lee J, Kumar P, Lee G, et al. Electrochemical performance of surfactant-processed LiFePO4 as a cathode material for lithium-ion rechargeable batteries[J].Ionics,2013,19(2):371.
8 Barker J, Saidi M Y, Swoyer J L. Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method [J].Electrochemical and Solid State Letters,2003,6(3):A5.
9 Park K S, Son J T, Chung H T, et al. Synthesis of LiFePO4 by Co-precipitation and microwave heating[J].Electrochemistry Communications,2003,5(10):839.
10 Lin Y, Wu J B, Chen W P. Enhanced electrochemical performance of LiFePO4/C prepared by sol-gel synthesis with dry ball-milling[J].Ionics,2013,19(2):227.
11 Wang Q, Deng S X, Wang H, et al. Hydrothermal synthesis of hie-rarchical LiFePO4 microspheres for lithium ion battery[J].Journal of Alloys and Compounds,2013,553:69.
12 Rissouli K, Benkhouja K, Ramos-Barrado J R, et al. Electrical conductivity in lithium orthophosphates[J].Materials Science & Engineering B,2003,98:185.
13 Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J].Solid State Ionics,2002,148:45.
14 Hsieh C T, Chen I L, Chen W Y, et al. Synthesis of iron phosphate powders by chemical precipitation route for high-power lithium iron phosphate cathodes[J].Electrochimica Acta,2012,83(1):202.
15 Li L, Li X, Wang Z, et al. Stable cycle-life properties of Ti-doped LiFePO4, compounds synthesized by co-precipitation and normal temperature reduction method[J].Journal of Physics & Chemistry of Solids,2009,70(1):238.
16 Chen C, Liu G B, Wang Y, et al. Preparation and electrochemical properties of LiFePO4/C nanocomposite using FePO4·2H2O nanoparticles by introduction of Fe3(PO4)2·8H2O at low cost[J].Electrochimica Acta,2013,113:464.
17 Oh S W, Myung S T, Oh S M, et al. Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4, with high tap density as positive electrode materials for lithium batteries[J].Electrochimica Acta,2010,55(3):1193.
18 Zhao M, Xiao R G, Liao X, et al. Hydrothermal preparation of battery-grade iron phosphate from furerro-phosphorus[J].Materials Review B: Research Papers,2017,31(10):25(in Chinese).
赵曼,肖仁贵,廖霞,等.水热法以磷铁制备电池级磷酸铁的研究[J].材料导报:研究篇,2017,31(10):25.
19 Yan J G, Zhao J, Ai Y, et al. Study on infrared spectrum analysis of materials in alumina production[J].Light Metals,2001(2):14(in Chinese).
闫晋钢,赵杰,艾勇,等.氧化铝生产中物料的红外光谱分析研究[J].轻金属,2001(2):14.
20 Zhu M. Solvothermal synthesis of nanoplate LiFePO4 and its electrochemical properties[D].Changsha: National University of Defense Technology,2012(in Chinese).
朱敏.取向生长纳米LiFePO4片状材料的制备及其电化学性能研究[D].长沙:国防科学技术大学,2012.
21 Li S. Study on surfactant assisted synthesis of lithium iron phosphate[D].Tianjin: Hebei University of Technology,2010(in Chinese).
李松.表面活性剂辅助合成磷酸铁锂的研究[D].天津:河北工业大学,2010.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[5] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[6] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[7] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[8] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[9] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[10] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[11] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[12] 陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
[13] 张鸿宇,李治应,曾蓉,. 高效温和制备纳米片状β-Co(OH)2用于超级电容器电极[J]. 材料导报编辑部, 2017, 31(22): 15-20.
[14] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[15] 张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed