Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2565-2570    https://doi.org/10.11896/j.issn.1005-023X.2018.15.005
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1
邓安强1,2, 罗永春1,2, 王浩1, 赵磊1, 罗元魁1
1 兰州理工大学材料科学与工程学院,兰州 730050;
2 兰州理工大学有色金属先进加工与再利用省部共建国家重点实验室,兰州 730050
Effect of Annealing Treatment on the Phase Structure and ElectrochemicalPropertiesof La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1 A2B7-type Hydrogen Storage Alloys
DENG Anqiang1,2, LUO Yongchun1,2, WANG Hao1, ZHAO Lei1, LUO Yuankui1
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050;
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 1797KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用高频感应熔炼法制备La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1储氢合金,对铸态合金在900 ℃下退火热处理24 h。结构分析表明,铸态合金微观组织由CaCu5型结构、Ce5Co19型结构及Ce2Ni7型结构三相组成,而退火合金则是单相Ce2Ni7型结构。铸态和退火合金电极均具有良好的活化性能,退火合金电极放电曲线更为平坦和宽阔。两种合金电极腐蚀电位基本一致,但铸态合金电极腐蚀电流更大。合金经过退火后其电极循环稳定性(S100=83.5%)明显优于铸态合金电极(S100=69%)。在100次电化学充放电循环内,低容量充电时,退火合金电极容量不衰减,合金电极容量衰减的充电容量临界点为活化最大放电容量(Cmax)的90%。铸态和退火合金电极动力学性能差别不大,铸态合金电极高倍率放电主要由氢在其体相中扩散控制,退火合金电极高倍率放电则主要由其表面电荷转移控制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓安强
罗永春
王浩
赵磊
罗元魁
关键词:  储氢合金  A2B7  退火  相结构  电化学性能    
Abstract: La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1 hydrogen storage alloys were prepared by high frequency induction melting, and the as-cast alloy was annealed at 900 ℃ for 24 h. A structural analysis of the alloys showed that the as-cast alloy was composed of CaCu5-type, Ce5Co19-type and Ce2Ni7-type phases, while the annealed alloy was a single phase Ce2Ni7-type structure. Both the as-cast and annealed alloy electrodes had good activation properties. Discharge curve platform became flatter and wider after annealing treatment. The corrosion potential of the two alloy electrode was basically the same, but the as-cast alloy electrode bear higher corrosion current. The cycle stability of the annealed alloy electrode (S100=83.5%) was obviously better than that of the as-cast alloy electrode (S100=69%). In 100 electrochemical charge/discharge cycles, when the charge capacity was low, the capacity of the alloy electrodes did not degraded. 90% Cmax was the charging capacity critical point of alloy electrode capacity attenuation. The kinetic properties of both the as-cast and annealed alloy electrodes were almost the same. High rate dischargeability characteristics of as-cast alloy electrode was controlled by the hydrogen diffusion rate in alloy bulk, while the annealed alloy electrode was controlled by the charge transfer on alloys surface.
Key words:  hydrogen storage alloys    A2B7-type    annealing    phase structure    electrochemical properties
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TG139.7  
基金资助: 国家自然科学基金(51761026)
通讯作者:  罗永春:通信作者,1963年生,博士研究生导师,研究方向为储氢材料及材料电化学 E-mail:luoyc@lut.cn   
作者简介:  邓安强:男,1982年生,博士研究生,副教授,研究方向为储氢材料与电化学材料 E-mail:ponder112@126.com
引用本文:    
邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
DENG Anqiang, LUO Yongchun, WANG Hao, ZHAO Lei, LUO Yuankui. Effect of Annealing Treatment on the Phase Structure and ElectrochemicalPropertiesof La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1 A2B7-type Hydrogen Storage Alloys. Materials Reports, 2018, 32(15): 2565-2570.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.005  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2565
1 Kadir K, Sakai T, Uehara I. Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers[J].Journal of Alloys and Compounds,1997,257:115.
2 Kohno T, Yoshida H, Kawashima F, et al. Hydrogen storage pro-perties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14[J].Journal of Alloys and Compounds,2000,311:L5.
3 Verbovyts’kyi Y V, Zavalii I Y. New metal-hydride electrode materials based on R1-xMgxNi3-4 alloys for chemical current sources[J].Materials Science,2016,51:443.
4 Deng A Q,Fan J B,Qian K N,et al. Effect of heat treatment on the structure and properties of La4MgNi19 hydrogen storage electrode alloys[J].Acta Physico-Chimica Sinica,2011,27(1):103(in Chinese).
邓安强,樊静波,钱克农,等.热处理对La4MgNi19储氢电极合金结构和性能的影响[J].物理化学学报,2011,27(1):103.
5 Aoki K, Masumoto T. Hydrogen-induced amorphization of intermetallics[J].Journal of Alloys and Compounds,1995,231:20.
6 Chung U I, Lee J Y. A study on hydrogen-induced amorphization in the La-Ni system[J].Journal of Non-Crystalline Solids,1989,110:203.
7 Gal L, Charbonnier V, Zhang J X, et al. Optimization of the La substitution by Mg in the La2Ni7 hydride-forming system for use as negative electrode in Ni-MH battery[J].International Journal of Hydrogen Energy,2015,40:17017.
8 Denys R V, Riabov A B, Yartys V A, et al. Mg substitution effect on the hydrogenation behaviour, thermodynamic and structural properties of the La2Ni7-H(D)2 system[J].Journal of Solid State Chemistry,2008,181:812.
9 Zhang Y H, Yang T, Zhai T T, et al. Effects of stoichiometric ratio La/Mg on structures and electrochemical performances of as-cast and annealed La-Mg-Ni-based A2B7-type electrode alloys[J].Transactions of Nonferrous Metals Society of China,2015,25:1968.
10 Iwase K, Terashita N, Mori K, et al. Structural parameters of Pr3MgNi14 during hydrogen absorption-desorption process[J].Inorganic Chemistry,2012,51:11805.
11 Ma S, Gao M X, Li R, et al. A study on the structural and electrochemical properties of La0.7-xNdxMg0.3Ni2.45Co0.75Mn0.1Al0.2 (x=0.0-3.0) hydrogen storage alloys[J].Journal of Alloys and Compounds,2008,457:457.
12 Zhang Q A, Chen Z L, Li Y T, et al. Comparative investigations on hydrogen absorption-desorption properties of Sm-Mg-Ni compounds: The effect of [SmNi5]/[SmMgNi4] unit ratio[J].The Journal of Physical Chemistry C,2015,119:4719.
13 Charbonnier V, Monnier J, Zhang J X, et al. Relationship between H2 sorption properties and aqueous corrosion mechanisms in A2Ni7 hydride forming alloys ( A=Y, Gd or Sm)[J].Journal of Power Sources,2016,326:146.
14 Li Y, Han D, Han S M, et al. Effect of rare earth elements on electrochemical properties of La-Mg-Ni-based hydrogen storage alloys[J].International Journal of Hydrogen Energy,2009,34:1399.
15 Puga B, Joiret S, Vivier V, et al. Electrochemical properties and dissolution mechanism of A2Ni7 hydrides (A=Y, Gd, La-Sm)[J].ChemElectroChem,2015,2:1321.
16 Gao Z J, Kang L, Luo Y C. Microstructure and electrochemical hydrogen storage properties of La-R-Mg-Ni-based alloy electrodes[J].New Journal of Chemistry,2013,37:1105.
17 Roisnel T, Rodríquez-Carvajal J. WinPLOTR: A windows tool for powder diffraction pattern analysis[J].Materials Science Forum,2001,378-381:118.
18 Georg. Powder diffraction: The rietveld method and the two-stage method to determine and refine crystal structures from powder diffraction data[M].Heidelberg:Springer Press,2006:1
19 Okamoto H. La-Ni (lanthanum-nickel)[J].Journal of Phase Equilibria,2002,23(3):287.
20 Virkar A V, Raman A. Crystal structures of AB3 and A2B7 rare earth-nickel phases[J].Journal of the Less Common Metals,1969,18:59.
21 Iwase K, Sakaki K, Nakamura Y, et al. In situ XRD study of La2Ni7Hx during hydrogen absorption-desorption[J].Inorganic Chemistry,2013,52:10105.
22 潘金生.材料科学基础[M].北京:清华大学出版社,2011:127.
23 Charbonnier V, Zhang J X, Monnier J, et al. Structural and hydrogen storage properties of Y2Ni7 deuterides studied by neutron powder diffraction[J].The Journal of Physical Chemistry C,2015,119:12218.
24 Li F, Young K, Ouchi T, et al. Annealing effects on structural and electrochemical properties of (LaPrNdZr)0.83Mg0.17(NiCoAlMn)3.3 alloy[J].Journal of Alloys and Compounds,2009,471:371.
25 Notten P H L. Double-phase hydride forming compounds: A new class of highly electrocatalytic materials[J].Journal of the Electrochemical Society,1991,138:1877.
26 Zheng G. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution[J].Journal of the Electrochemical Society,1995,142:2695.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[5] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[6] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[7] 闫静,田晓,赵宣,赵丽娟,杨艳春,陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[8] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[9] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[10] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[11] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[12] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[13] 山世浩, 王庆国, 曲兆明, 成伟, 李昂. 二氧化钒薄膜材料相变临界场强调控方法研究[J]. 材料导报, 2018, 32(6): 870-873.
[14] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[15] 彭晓文, 陈冷. 缓冲层Ta对退火Co/Cu/Co薄膜微观结构和界面互扩散的影响[J]. 材料导报, 2018, 32(22): 3931-3935.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed