Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 368-372    https://doi.org/10.11896/j.issn.1005-023X.2018.03.004
     材料与可持续发展(一)—— 面向洁净能源的先进材料 |
腐殖酸基石墨化材料的制备及其电化学性能
司东永,黄光许,张传祥,邢宝林,陈泽华,陈丽薇,张浩然
河南理工大学化学与化工学院,焦作 454003
Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials
Dongyong SI,Guangxu HUANG,Chuanxiang ZHANG,Baolin XING,Zehua CHEN,Liwei CHEN,Haoran ZHANG
College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003
下载:  全 文 ( PDF ) ( 1853KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

以腐殖酸为前驱体,通过高温热处理制备锂离子电池负极材料。采用扫描电子显微镜(SEM)、X射线衍射(XRD)和电化学测试系统对该材料的形貌、微晶结构和电化学性能进行表征。结果表明,腐殖酸基石墨化材料呈现出较为规整的石墨片层结构,且随着石墨化温度的升高,所得材料的石墨化度也越来越高。腐殖酸基石墨化材料均表现出良好的电化学性能,石墨化温度为2 800 ℃所制备的石墨化材料的首次放电比容量为356.7 mAh/g,充电比容量为277.6 mAh/g,首次充放电的库仑效率为77.81%,在1C和2C倍率下50次充放电循环后的容量保持率分别高达99.4%、95.9%,是一种理想的锂离子电池负极材料。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
司东永
黄光许
张传祥
邢宝林
陈泽华
陈丽薇
张浩然
关键词:  腐殖酸  石墨化材料  锂离子电池  负极材料  电化学性能    
Abstract: 

The lithium-ion battery anode material have been prepared from humic acid through high-temperature heat treatment. The morphology, microcrystalline structure and electrochemical properties of as-prepared activated material were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical testing system. The results indicated that the humic acid-based graphitized materials showed a more regular graphite lamellar structure, and the degree of graphitization of the materials was also getting higher and higher with the increase of graphitization temperature. The humic acid-based graphitized mate-rials all presented good electrochemical performance. The graphitized material with the temperature of 2 800 ℃ had a first discharge specific capacity of 356.7 mAh/g and a charge capacity of 277.6 mAh/g, and the initial coulombic efficiencies was 77.81%. The capacity retention rate after 50 cycles at 1C and 2C rates was as high as 99.4% and 95.9%, respectively. The above results suggest that the humic acid-based graphitized material is an ideal lithium ion battery anode material.

Key words:  humic acid    graphitized material    lithium-ion batteries    anode material    electrochemical performance
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TQ424.1  
基金资助: 国家自然科学基金(U1361119);国家自然科学基金(41472127);国家自然科学基金(41372161);河南省高校科技创新团队(16IRTSTHN005);河南省教育厅自然科学研究计划项目(2011B44006);河南理工大学博士基金(B2010-82)
作者简介:  司东永:男,1990年生,硕士研究生,研究方向为锂离子电池负极材料 E-mail: 849294938@qq.com|张传祥:通信作者,男,1970年生,博士,教授,博士研究生导师,从事煤基炭材料及电化学应用等方面的教学及研究工作 E-mail: zcx223@hpu.edu.cn
引用本文:    
司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials. Materials Reports, 2018, 32(3): 368-372.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.004  或          http://www.mater-rep.com/CN/Y2018/V32/I3/368
图1  山西腐殖酸石墨化材料的SEM图(2 000×)
图2  山西腐殖酸石墨化材料的XRD谱
图3  山西腐殖酸石墨化电极材料在0.1C下的首次充放电曲线
Sample 0.5C
mAh/g
1C
mAh/g
2C
mAh/g
Capacity
retention rate
SX-HA-2200 129.1 90.6 30.4 83.0%
SX-HA-2400 126.6 105.6 38.5 89.3%
SX-HA-2600 216.7 138.6 37.0 90.7%
SX-HA-2800 239.4 200.6 150.7 94.2%
表1  山西腐殖酸石墨化电极材料在不同电流密度下的放电比容量和容量保持率
图4  山西腐殖酸石墨化电极材料的循环及倍率性能曲线(电子版为彩图)
图5  山西腐殖酸石墨化电极材料的循环伏安曲线
1 Tarscon J M, Rrmand M . Review article issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414:359.
2 Armand M, Tarascon J M . Buliding better batteries[J]. Nature, 2008,451(7179):652.
3 Xiao Q, Fan Y, Wang X , et al. A multilayer Si/CNT coaxial nanofiber LIB anode witha high areal capacity[J]. Energy & Environmental Science, 2014,2(7):655.
4 Lv Y C, Li H . Review of basic problems about electrochemical energy storage[J]. Electro-chemistry, 2015,21(5):412(in Chinese).
4 吕迎春, 李泓 . 电化学储能基本问题综述[J]. 电化学, 2015,21(5):412.
5 Sun X L . Preparation and electrochemical performance of carbon anode materials for lithiu-mion battery[D]. Qinhuangdao:Yanshan University, 2010(in Chinese).
5 孙学亮 . 锂离子电池碳负极材料的制备及其电化学性能的研究[D]. 秦皇岛:燕山大学, 2010.
6 Zhang Y G . Modification and surface treatment of carbon materials used as anode lithium ion secondary battery[D]. Tianjin:Tianjin University, 2004(in Chinese).
6 张永刚 . 锂离子二次电池炭负极材料的改性与修饰[D]. 天津:天津大学, 2004.
7 Wang W Y . Study on needle coke coated by phenolic resin used for lithium ion batteries[D]. Tianjin:Tianjin University, 2007(in Chinese).
7 王文燕 . 酚醛树脂包覆针状焦作为锂离子电池负极材料的研究[D]. 天津:天津大学, 2007.
8 Liu S H , et al. Improving the electrochemical properties of natural graphite spheres by coating with a pyrolytic carbon shell[J]. New Carbon Materials, 2008,23(1):30.
9 Zhang F L, Zhang S Y, Wu S . Present situation and future prospect of China graphite industry[J]. Carbon Technology, 2015,34(5):1(in Chinese).
9 张福良, 张世洋, 吴珊 . 中国石墨产业发展现状及未来展望[J]. 炭素技术, 2015,34(5):1.
10 Shen W C , et al. Current situation and development of Chinese graphite industry[J]. China Nonferrous Metals Industry,2013(2):1(in Chinese).
10 沈万慈 , 等. 石墨产业的现状与发展[J].中国非金属矿工业导刊,2013(2):1.
11 Zhao P , et al. Biotechnology humic acids-based electrospun carbon nanofibers as cost efficient electrodes for lithium-ion batteries[J]. Electrochimica Acta, 2016,203:66.
12 Cheng L , et al. Research progress of humic-acid containing fertilizer[J].Soil and Fertilizer Sciences,2011(5):1(in Chinese).
12 程亮 , 等. 腐殖酸肥料的研究进展[J].中国土壤与肥料,2011(5):1.
13 Han G H , et al. High-temperature oxidation behavior of vanadium, titanium-bearing magnetite pellet[J]. Journal of Iron and Steel Research, 2011,18(8):14.
14 Qazi U Y, Javaid R . Composite nanostructures with metal components[J]. Advances in Nanoparticles, 2016,5(1):27.
15 Kim B H , et al. Solvent-induced porosity control of carbon nanofiber webs for supercapacitor[J]. Journal of Power Sources, 2011,196(23):10496.
16 Jia K , et al. Solution blown aligned carbon nanofiber yarn as supercapacitor electrode[J]. Journal of Materials Science:Materials in Electronics, 2013,24(12):4769.
17 Zhao Y . Research of graphitized needle coke coated by phenolic resin pyrolytic carbon as anode material for lithium ion battery[D]. Shanghai:East China University of Science and Technology, 2012(in Chinese).
17 赵跃 . 酚醛树脂热解炭包覆石墨化针状焦用于锂离子电池负极材料的研究[D]. 上海:华东理工大学, 2012.
18 Tian L L , et al. Insertion and release mechanism of lithium ion in graphene materials[J].Science China Press,2011(18):1431(in Chinese).
18 田雷雷 , 等.锂离子在石墨烯材料中的嵌入脱出机制[J].科学通报, 2011(18):1431.
19 Lu M, Cheng H, Yang Y . A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells[J]. Electrochimica Acta, 2008,53(9):3539.
20 Guo D C , et al. Preparation and electrochemical performance of expanded graphites as anode materials for a lithium-ion battery[J]. New Carbon Materials, 2015,30(5):419(in Chinese).
20 郭德超 , 等. 微膨石墨锂离子电池负极材料的制备及电化学性能[J]. 新型炭材料, 2015,30(5):419.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[5] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[6] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[7] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[8] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[9] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[10] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[11] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[12] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[13] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[14] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[15] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed