Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23090101-6    https://doi.org/10.11896/cldb.23090101
  无机非金属及其复合材料 |
不同挤压工况下圆柱形锂离子电池的压缩响应研究
张涛1, 郑家豪1, 张新春1,2,*, 吴晓囡1, 黄子轩1, 尹啸笛1, 张晓翠3, 张英杰1,2
1 华北电力大学河北省电力机械装备健康维护与失效预防重点实验室,河北 保定 071003
2 华北电力大学电力机械装备先进制造与智能运维河北省工程研究中心,河北 保定 071003
3 天津市产品质量监督检测技术研究院电工技术科学研究中心,天津 300384
Study on Compression Responses of Cylindrical Lithium-ion Batteries Under Various Compression Conditions
ZHANG Tao1, ZHENG Jiahao1, ZHANG Xinchun1,2,*, WU Xiaonan1, HUANG Zixuan1, YIN Xiaodi1, ZHANG Xiaocui3, ZHANG Yingjie1,2
1 Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding 071003, Hebei, China
2 Hebei Engineering Research Center for Advanced Manufacturing & Intelligent Operation and Maintenance of Electric Power Machinery, North China Electric Power University, Baoding 071003, Hebei, China
3 Tianjin Product Quality Inspection Technology Research Institute, Electrical Technology Science Research Center, Tianjin 300384, China
下载:  全 文 ( PDF ) ( 3059KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了满足动力锂离子电池在机械滥用下安全运行的要求,利用实验和有限元模拟相结合的方法对不同挤压工况下锂离子电池的压缩响应特性和失效机理进行了研究。通过自行搭建的三维数字图像相关法监测平台,对18650圆柱形锂离子电池进行了挤压实验,给出了不同挤压工况(平面压缩、局部压痕和三点弯曲)下电池的力-电-热响应行为。基于COMSOL多物理场仿真软件建立了挤压载荷下圆柱形锂离子电池的多物理场耦合模型,具体讨论了加载方式对锂离子电池压缩响应的影响,并与实验结果进行了对比分析,二者吻合较好。研究结果表明,平面压痕和局部压缩工况下锂离子电池表现出一致的响应特性,承载力达到峰值后迅速下降;平面压缩工况下电池的峰值力大于局部压痕工况,随着荷电状态(SOC)的提高,电池的承载能力增强。本工作可为锂离子电池多功能设计和安全评估提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张涛
郑家豪
张新春
吴晓囡
黄子轩
尹啸笛
张晓翠
张英杰
关键词:  锂离子电池  挤压  力-电-热响应  电池失效  多物理场    
Abstract: To meet the requirements of safety operation of lithium-ion batteries (LIBs) under mechanical abuse, a combined approach of experimental testing and finite element simulation was employed to investigate the deformation responses and failure mechanisms of LIBs under different compression conditions. A self-built three-dimensional digital image correlation platform was utilized to conduct compression experiments on 18650 cylindrical cells, and the mechanical-electro-thermal response behaviors of LIBs under various compression conditions were investigated, including plane compression, local indentation, and spherical indentation. Additionally, a multiphysics coupling model of cylindrical LIBs under compression loads was established using COMSOL Multiphysics. The influence of loading methods on the compression response of LIBs was discussed in detail, and the comparison of the simulated results with the experimental results showed good consistence. The research results indicate that consistent response characteristics are exhibited under plane compression and local compression conditions. The load-bearing capacity reaches its peak and then declines rapidly. Moreover, the peak force of the battery under plane compression is higher than that under local indentation, and the load-bearing capacity of the cell increases with the state of charge (SOC). This work offers valuable insights for the multifunctional design and safety assessment of LIBs.
Key words:  lithium-ion battery    compression    mechanical-electro-thermal response    battery failure    multiphysics
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TM912  
基金资助: 河北省自然科学基金(A2020502005)
通讯作者:  * 张新春,工学博士,华北电力大学机械工程系副教授,河北省电力机械装备健康维护与失效预防重点实验室副主任。2011年1月在北京交通大学力学系工程力学专业博士毕业后到华北电力大学工作至今。目前主要从事新型功能/智能材料与结构、新能源电池、冲击动力学等方面的研究工作。发表论文70余篇,包括International Journal of Impact Engineering、International Journal of Mechanical Sciences、Journal of Sandwich Structures and Materials、Defence Technology、International Journal of Applied Mechanics、Thin-Walled Structures、《爆炸与冲击》等。xczhang@ncepu.edu.cn   
作者简介:  张涛,2021年6月于华北电力大学获得工学学士学位。现为华北电力大学机械工程系硕士研究生,在张新春副教授的指导下进行研究。目前主要研究领域为机械滥用下锂离子电池的安全评估。
引用本文:    
张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
ZHANG Tao, ZHENG Jiahao, ZHANG Xinchun, WU Xiaonan, HUANG Zixuan, YIN Xiaodi, ZHANG Xiaocui, ZHANG Yingjie. Study on Compression Responses of Cylindrical Lithium-ion Batteries Under Various Compression Conditions. Materials Reports, 2024, 38(20): 23090101-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090101  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23090101
1 Lai X, Chen Q W, Gu H H, et al. Journal of Mechanical Engineering, 2022, 58(22), 3 (in Chinese).
来鑫, 陈权威, 顾黄辉, 等. 机械工程学报, 2022, 58(22), 3.
2 Wu Q, Xu Y J, Zhong Z X, et al. Materials Reports, 2024, 38(11), 22110030 (in Chinese).
吴琼, 许咏杰, 钟展雄, 等. 材料导报, 2024, 38(11), 22110030.
3 Yin X D, Zhang T, Zhang X C, et al. Materials Reports, 2024, 38(2), 22070154 (in Chinese).
尹啸笛, 张涛, 张新春, 等. 材料导报, 2024, 38(2), 22070154.
4 Li H G, Zhang C, Cao J C, et al. Journal of Mechanical Engineering, 2022, 58(24), 121(in Chinese).
李红刚, 张超, 曹俊超, 等. 机械工程学报, 2022, 58(24), 121.
5 Liu N N, Zhang X C, Dong S J, et al. Chinese Journal of Applied Mechanics, 2024(4), 1 (in Chinese).
刘南南, 张新春, 董思捷, 等. 应用力学学报, 2024(4), 1.
6 Xu J, Jia Y, Liu B, et al. Experimental Mechanics, 2018, 58, 633.
7 Dong S J, Zhang X C, Wang Y L, et al. China Mechanical Engineering, 2022, 33(8), 915 (in Chinese).
董思捷, 张新春, 汪玉林, 等. 中国机械工程, 2022, 33(8), 915.
8 Zhang, X C, Liu N N, Dong S J, et al. ASME Journal of Electrochemical Energy Conversion and Storage, 2023, 20(4), 041010.
9 Wang H, Duan X, Liu B. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2), 021015.
10 Mo F, Tian Y, Zhao S, et al. Engineering Failure Analysis, 2022, 137, 106399.
11 Hu L L, Zhang Z W, Zhou M Z, et al. International Journal of Impact Engineering, 2020, 143, 103618.
12 Liu B, Jia Y, Yuan C, et al. Energy Storage Materials, 2020, 24, 85.
13 Jia Y, Li J, Yuan C, et al. Advanced Energy Materials, 2021, 11(18), 2003868.
14 Liu B, Zhao H, Yu H, et al. Electrochimica Acta, 2017, 256, 172.
15 Duan X, Wang H, Jia Y, et al. Energy Storage Materials, 2022, 45, 667.
16 Wang W, Yang S, Lin C, et al. Journal of Power Sources, 2020, 451, 227749.
17 Wang W, Yang S, Lin C, et al. IEEE Access, 2018, 6, 26358.
18 Wierzbicki T, Sahraei E. Journal of Power Sources, 2013, 241, 467.
19 Said M S M, Tohir M Z M. Journal of Loss Prevention in the Process Industries, 2022, 79, 104854.
20 Xu Y, Liu F, Guo J, et al. Ionics, 2022, 28, 107.
21 Li H, Liu B, Zhou D, et al. Journal of the Electrochemical Society, 2020, 167(12), 120501.
22 Xu J, Liu B, Wang L, et al. Engineering Failure Analysis, 2015, 53, 97.
23 Li Y D, Wang W W, Lin C, et al. Journal of Cleaner Production, 2021, 286, 125451.
24 Luo H, Xia Y, Zhou Q. Journal of Power Sources, 2017, 357, 61.
[1] 胡鸿彪, 徐帅, 章海明, 金朝阳. 等轴晶AZ80镁合金的全场晶体塑性模拟研究[J]. 材料导报, 2024, 38(9): 22110077-6.
[2] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[3] 林忠亮, 白清顺, 唐伟, 吴保全, 刘烨欣, 兰洋. 压合衬套冷挤压强化的残余应力的数值模拟[J]. 材料导报, 2024, 38(3): 22070260-8.
[4] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[5] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[6] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[7] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[8] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[9] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[10] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[11] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[12] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[13] 穆洪亮, 冯柳, 吴立清, 毛晓璇, 刘志超. SiO用作锂离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(18): 21080240-13.
[14] 于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
[15] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed