Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 21120080-15    https://doi.org/10.11896/cldb.21120080
  无机非金属及其复合材料 |
低温金属离子电池负极材料的研究进展
于贺川, 熊兴宇, 胡仁宗*
华南理工大学材料科学与工程学院,广东省先进储能材料重点实验室,广州 510641
Research Progress on Anode Materials for Low Temperature Metal-ion Batteries
YU Hechuan, XIONG Xingyu, HU Renzong*
Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
下载:  全 文 ( PDF ) ( 26100KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环境污染与温室效应的日益严重促进了清洁二次能源的发展与利用。具有高能量密度、环境友好等特性的锂离子电池成为最佳的储能载体。但当温度低于0 ℃时,传统石墨负极难嵌锂,电池性能急剧恶化,且低温充电时易析锂引发安全问题。为了满足锂离子电池的低温应用需求,通过改变电解液成分使其熔点降低,并调节SEI成分与去溶剂化过程,能够降低电荷转移阻抗,但石墨负极的本质属性使其低温应用受到限制。为从根源上解决锂离子电池低温性能差的问题,需要寻找具有适中工作电位、高离子扩散能力、高容量的新型负极材料替代传统石墨负极。
嵌入式负极材料中,钛酸锂和二氧化钛具有较好的低温与倍率性能,但能量密度较低,应用范围受到限制,研究重点在于进一步挖掘其低温高倍率能力,使其应用在较为恶劣的服役环境中。合金的嵌锂反应在低温下较易进行,并且能够提供较高容量,其是极具潜力的锂离子电池低温负极材料,可以通过复合结构设计与表面改性提升其低温性能与循环寿命。基于转化反应的负极材料通常具有较高的赝电容效应,较快的表面反应受温度的影响较小,能够在低温下实现快速的充放电,通过纳米结构设计等方法能够进一步增强材料的赝电容效应。尽管Na、K、Mg等新型金属离子电池能量密度较低,但资源丰富,并且本征低温性能优于锂离子电池,在寻找与之适配的负极材料后有望成为重要的低温储能器件。
本文根据金属离子在负极材料中的存储方式来分类,综述了低温锂离子电池以及新型金属离子电池负极材料的研究进展,并展望了低温负极材料的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于贺川
熊兴宇
胡仁宗
关键词:  锂离子电池  钠离子电池  低温性能  负极材料    
Abstract: The increasingly serious environmental pollution and greenhouse effecthave promoted the development and utilization of secondary energy sources. Lithium-ion battery (LIB) is environmentally friendly and has high energy density, which undoubtedly becomes the most promising energy storage carrier. However, it is still not completely satisfied for the wide temperature applications, especially in sub-zero field. At low-temperature, lithium ions are difficult to insert into graphite anode and easily deposite to form lithium dendrite during charging, which makes the performance of battery deteriorating sharply, and causes serious safety problems. In order to well perform the LIBs at low temperature, many researchers have tried to introduce different additives into the electrolyte, which improves the composition of SEI and desolvation process of lithium ions, greatly reducing the charge transfer resistance. However, the commercial graphite anode has a poor ionic diffusivity and very low lithiation potentials, which seriously affect the low temperature performance of LIBs. Therefore, it is necessary to seek alternative anode materials with better cold resistance.
Among the intercalation anode materials, lithium titanate and titanium dioxides have good low-temperature performance. However, their low energy density limits their wide application. The research of titanium based anodes focus on further enhancing their high-rate capability at low temperature. The Li-alloying reactions in alloy-based anode materials are easy to take place at low temperature. And in particular, the moderate lithiation potentials of alloys also enable the anodes having high capacity and higher safety at low temperature. The conversion-type anode mate-rials usually have higher pseudo capacitance effect, and their rapid surface reaction is less affected by temperature change. These ensure fast charge-discharge capability for the conversion anodes at low-temperature. New type metal-ion batteries (Na-ion, K-ion, Mg-ion) have been widely attracted due to their abundant resources and the better intrinsic low-temperature performance than LIBs. They could be important alternative energy storage divides for low-temperature applications as assembling with the suitable anode materials.
This review summarizes the research progress of anode materials, classified with the storage mechanism of metal ions, for lithium-ion battery and metal-ion battery anode materials for low-temperature application. The development trends of low-temperature anode materials have been also prospected.
Key words:  Li-ion battery    Na-ion battery    low-temperature performance    anode material
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TM912  
基金资助: 国家自然科学基金(52071144;51822104;51831009;51621001);广州市重点研发计划项目(202102040001)
通讯作者:  *胡仁宗,华南理工大学材料学院教授、博士研究生导师。2005年本科毕业于大连理工大学材料系,2011年博士毕业于华南理工大学材料加工工程专业。主要从事锂离子电池材料的应用基础研究。主持国家自然科学基金、国家重点研发计划课题等科研项目15项。迄今以第一/通信作者在 Adv.Mater.、Acta Mater.、Energy Environ.Sci.、Adv.Funct.Mater.、Energy Storage Mater.等国际学术期刊上发表 SCI 论文140篇,获授权发明专利 23项。2018年获国家自然科学基金优秀青年基金资助,2019年获中国热处理学会周志宏青年科技成就奖,2021年获广东专利奖金奖。msrenzonghu@scut.edu.cn   
作者简介:  于贺川,2019年6月毕业于华南理工大学,获得工学学士学位。现为华南理工大学材料科学与工程学院硕士研究生,在胡仁宗教授的指导下进行研究。目前主要研究领域为锂离子电池低温负极材料。
引用本文:    
于贺川, 熊兴宇, 胡仁宗. 低温金属离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(17): 21120080-15.
YU Hechuan, XIONG Xingyu, HU Renzong. Research Progress on Anode Materials for Low Temperature Metal-ion Batteries. Materials Reports, 2023, 37(17): 21120080-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120080  或          http://www.mater-rep.com/CN/Y2023/V37/I17/21120080
1 Nagasubramanian G. Journal of Applied Electrochemistry, 2001, 31(1), 99.
2 Li G, Li J, Wang J, et al. In: 7th International Workshop of Advanced Manufacturing and Automation (IWAMA). Singapore, 2018, pp. 143.
3 Hou J, Yang M, Wang D, et al. Advanced Energy Materials, 2020, 10(18), 1904152.
4 Wilhelm J, Seidlmayer S, Erhard S, et al. Journal of the Electrochemical Society, 2018, 165(9), A1846.
5 Chang Z, Qiao Y, Yang H, et al. Energy & Environmental Science, 2020, 13(11), 4122.
6 Zhu G, Wen K, Lv W, et al. Journal of Power Sources, 2015, 300, 29.
7 Rodrigues M T F, Babu G, Gullapalli H, et al. Nature Energy, 2017, 2(8), 17108.
8 Gupta A, Manthiram A. Advanced Energy Materials, 2020, 10(38), 2001972.
9 Waldmann T, Hogg B I, Kasper M, et al. Journal of the Electrochemical Society, 2016, 163(7), A1232.
10 Burow D, Sergeeva K, Calles S, et al. Journal of Power Sources, 2016, 307, 806.
11 Park G, Gunawardhana N, Nakamura H, et al. Journal of Power Sources, 2012, 199, 293.
12 Hu D, Chen L, Tian J, et al. Chinese Journal of Chemistry, 2021, 39(1), 165.
13 Zhang S S, Xu K, Jow T R. Electrochimica Acta, 2002, 48(3), 241.
14 Matadi B P, Geniès S, Delaille A, et al. Journal of the Electrochemical Society, 2017, 164(12), A2374.
15 Shi J, Ehteshami N, Ma J, et al. Journal of Power Sources, 2019, 429, 67.
16 Yoo D J, Liu Q, Cohen O, et al. ACS Applied Materials & Interfaces, 2022, 14(9), 11910.
17 Jurng S, Kim H S, Lee J G, et al. Journal of the Electrochemical Society, 2015, 163(2), A223.
18 Ohta N, Nagaoka K, Hoshi K, et al. Journal of Power Sources, 2009, 194(2), 985.
19 Gunawardhana N, Dimov N, Sasidharan M, et al. Electrochemistry Communications, 2011, 13(10), 1116.
20 Nobili F, Mancini M, Dsoke S, et al. Journal of Power Sources, 2010, 195(20), 7090.
21 Nobili F, Dsoke S, Mecozzi T, et al. Electrochimica Acta, 2005, 51(3), 536.
22 Xu J, Wang X, Yuan N, et al. Journal of Power Sources, 2019, 430, 74.
23 Lee M J, Lee K, Lim J, et al. Advanced Functional Materials, 2021, 31(14), 2009397.
24 Wang C, Appleby A J, Little F E. Journal of the Electrochemical Society, 2002, 149(6), A754.
25 Liao L, Zuo P, Ma Y, et al. Electrochimica Acta, 2012, 74, 260.
26 Gao J, Fu L J, Zhang H P, et al. Electrochemistry Communications, 2006, 8(11), 1726.
27 Zhao G, Wei Z, Zhang N, et al. Materials Letters, 2012, 89, 243.
28 Huang F, Zhao Q, Yang J, et al. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(14), 1675.
29 Xie L, Tang C, Bi Z, et al. Advanced Energy Materials, 2021, 11(38), 2101650.
30 Hori H, Shikano M, Kobayashi H, et al. Journal of Power Sources, 2013, 242, 844.
31 Alvin S, Cahyadi H S, Hwang J, et al. Advanced Energy Materials, 2020, 10(20), 2000283.
32 Liu Y, Yang B, Dong X, et al. Angewandte Chemie International Edition, 2017, 56(52), 16606.
33 Ariyoshi K, Yamato R, Ohzuku T. Electrochimica Acta, 2005, 51(6), 1125.
34 Zaghib K, Dontigny M, Guerfi A, et al. Journal of Power Sources, 2011, 196(8), 3949.
35 Tsai P C, Hsu W D, Lin S K. Journal of the Electrochemical Society, 2014, 161(3), A439.
36 Huang Q, Yang Z, Mao J. Ionics, 2017, 23(4), 803.
37 Allen J L, Jow T R, Wolfenstine J. Journal of Power Sources, 2006, 159(2), 1340.
38 Li C, Huang Q, Mao J. Journal of Materials Science: Materials in Electronics, 2020, 31(23), 21444.
39 Zhang Y, Luo Y, Chen Y, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 17145.
40 Jeong J H, O M J, Roh K C. Journal of Alloys and Compounds, 2021, 856, 158233.
41 Ho C K, Li C Y V, Deng Z, et al. Carbon, 2019, 145, 614.
42 Hu B, Zhou X, Xu J, et al. ChemElectroChem, 2020, 7(3), 716.
43 Liu Y, Yang Y. Journal of Nanomaterials, 2016, 2016, 8123652.
44 Lin D, Lyu L, Li K, et al. Journal of Materials Chemistry A, 2021, 9(14), 9256.
45 Li J, Li Y, Lan Q, et al. Journal of Power Sources, 2019, 423, 166.
46 Huang C, Zhao S X, Peng H, et al. Journal of Materials Chemistry A, 2018, 6(29), 14339.
47 Huang Q, Yang Z, Mao J. Scientific Reports, 2017, 7(1), 15292.
48 Pu Z, Lan Q, Li Y, et al. Journal of Power Sources, 2019, 437, 226890.
49 Meng Q, Chen F, Hao Q, et al. Journal of Alloys and Compounds, 2021, 885, 160842.
50 Marinaro M, Pfanzelt M, Kubiak P, et al. Journal of Power Sources, 2011, 196(22), 9825.
51 Zhao X, Lehto V P. Nanotechnology, 2020, 32(4), 042002.
52 Liang B, Liu Y, Xu Y. Journal of Power Sources, 2014, 267, 469.
53 Markevich E, Salitra G, Aurbach D. Journal of the Electrochemical Society, 2016, 163(10), A2407.
54 Farmakis F, Georgoulas N, Karafyllidis I, et al. E3S Web of Conferences, 2017, 16, 08003.
55 Thiruvengadam S, Farmakis F, Elmasides C, et al. In: 2019 European Space Power Conference (ESPC). France, 2019, pp. 1.
56 Subburaj T, Brevet W, Farmakis F, et al. Electrochimica Acta, 2020, 354, 136652.
57 Yao K P C, Okasinski J S, Kalaga K, et al. Advanced Energy Materials, 2019, 9(8), 1803380.
58 Richter K, Waldmann T, Paul N, et al. ChemSusChem, 2020, 13(3), 529.
59 Liu X, Sun X, Shi X, et al. Chemical Engineering Journal, 2021, 421, 127782.
60 Chen J, Fan X, Li Q, et al. Nature Energy, 2020, 5(5), 386.
61 Ying H, Han W Q. Advanced Science, 2017, 4(11), 1700298.
62 Nobili F, Mancini M, Stallworth P E, et al. Journal of Power Sources, 2012, 198, 243.
63 Nobili F, Meschini I, Mancini M, et al. Electrochimica Acta, 2013, 107, 85.
64 Yan Y, Ben L, Zhan Y, et al. Electrochimica Acta, 2016, 187, 186.
65 Elia G A, Nobili F, Tossici R, et al. Journal of Power Sources, 2015, 275, 227.
66 Wen W, Zou M, Feng Q, et al. Electrochimica Acta, 2015, 182, 272.
67 Hu R, Chen D, Waller G, et al. Energy & Environmental Science, 2016, 9(2), 595.
68 Tan L, Hu R, Zhang H, et al. Energy Storage Materials, 2021, 36, 242.
69 Tan L, Lan X, Chen J, et al. Advanced Energy Materials, 2021, 11(39), 2101855.
70 Tian M, Ben L, Jin Z, et al. Electrochimica Acta, 2021, 396, 139224.
71 Wu S, Han C, Iocozzia J, et al. Angewandte Chemie International Edition, 2016, 55(28), 7898.
72 Qin J, Cao M. Chemistry-An Asian Journal, 2016, 11(8), 1169.
73 Chou C Y, Hwang G S. Journal of Power Sources, 2014, 263, 252.
74 Gavrilin I M, Kudryashova Y O, Kuz’mina A A, et al. Journal of Electroanalytical Chemistry, 2021, 888, 115209.
75 Kulova T L, Gavrilin I M, Kudryashova Y O, et al. Mendeleev Communications, 2020, 30(6), 775.
76 Collins G A, Mcnamara K, Kilian S, et al. ACS Applied Energy Materials, 2021, 4(2), 1793.
77 Shang M, Chen X, Li B, et al. ACS Nano, 2020, 14(3), 3678.
78 Lu Y, Yu L, Lou X W. Chem, 2018, 4(5), 972.
79 Poizot P, Laruelle S, Grugeon S, et al. Nature, 2000, 407(6803), 496.
80 Liu L, Wang J, Oswald S, et al. ACS Nano, 2020, 14(9), 11753.
81 Tan L, Lan X, Hu R, et al. ChemNanoMat, 2021, 7(1), 61.
82 Syum Z, Billo T, Sabbah A, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(27), 8970.
83 Fan H H, Li H H, Wang Z W, et al. ACS Applied Materials & Interfaces, 2019, 11(51), 47886.
84 Carroll G M, Zhang H, Dunklin J R, et al. Energy & Environmental Science, 2019, 12(5), 1648.
85 Jiang H, Ren D, Wang H, et al. Advanced Materials, 2015, 27(24), 3687.
86 Liu X, Wang Y, Yang Y, et al. Nano Energy, 2020, 70, 104550.
87 Simon P, Gogotsi Y. Nature Materials, 2008, 7(11), 845.
88 Wang G, Zhang L, Zhang J. Chemical Society Reviews, 2012, 41(2), 797.
89 Chen Q, Zhong W, Zhang J, et al. Journal of Alloys and Compounds, 2019, 772, 557.
90 Fan H, Bahmani F, Kaneti Y V, et al. Chemistry-A European Journal, 2020, 26(60), 13652.
91 Tian X, Du L, Yan Y, et al. ChemElectroChem, 2019, 6(8), 2248.
92 Come J, Augustyn V, Kim J W, et al. Journal of the Electrochemical Society, 2014, 161(5), A718.
93 Dong X, Yang Y, Li P, et al. Batteries & Supercaps, 2020, 3(10), 1016.
94 Okoshi M, Yamada Y, Yamada A, et al. Journal of the Electrochemical Society, 2013, 160(11), A2160.
95 Kuratani K, Uemura N, Senoh H, et al. Journal of Power Sources, 2013, 223, 175.
96 Yabuuchi N, Kubota K, Dahbi M, et al. Chemical Reviews, 2014, 114(23), 11636.
97 Zhao-Karger Z, Fichtner M. Frontiers in Chemistry, 2019, 6, 656.
98 Hou B H, Wang Y Y, Ning Q L, et al. Advanced Materials, 2019, 31(40), 1903125.
99 Zhou L F, Gong H, Liu L Y, et al. ChemNanoMat, 2021, 7(9), 1020.
100 Li Q, Jiang K, Li X, et al. Advanced Energy Materials, 2018, 8(25), 1801162.
101 Zhang X, Zeng M, She Y, et al. Journal of Power Sources, 2020, 477, 228735.
102 Williamson G A, Hu V W, Yoo T B, et al. ACS Applied Energy Materials, 2019, 2(9), 6741.
103 Huang K C, Guo J Z, Li H H, et al. Journal of Alloys and Compounds, 2018, 731, 881.
104 Chen B, Qin H, Li K, et al. Nano Energy, 2019, 66, 104133.
105 Cao Y, Cao X, Dong X, et al. Advanced Functional Materials, 2021, 31(33), 2102856.
106 Tian Y, Lu J, Tang H, et al. Chemical Engineering Journal, 2021, 422, 130054.
107 Wang X, Zhao W, Zhang W, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(35), 11705.
108 Fan A, Hou T, Sun X, et al. ChemElectroChem, 2020, 7(8), 1904.
109 Wang Y, Gao X, Li L, et al. Nano Energy, 2020, 67, 104248.
110 Kim H, Kim J C, Bianchini M, et al. Advanced Energy Materials, 2018, 8(9), 1702384.
111 Asif M, Kilian S, Rashad M. Energy Storage Materials, 2021, 42, 129.
112 Zhang H, Wang L, Li H, et al. ACS Energy Letters, 2021, 6(10), 3719.
[1] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[2] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[3] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[4] 陈喜, 杨春利, 黄江龙, 张浩, 王靖. 高电压钴酸锂正极材料研究进展[J]. 材料导报, 2023, 37(13): 21070223-14.
[5] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[6] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[7] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[8] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[9] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[10] 胡竟志, 徐照华, 沈超, 谢科予. 三维打印技术在电化学储能器件中的应用研究进展[J]. 材料导报, 2022, 36(20): 20100151-11.
[11] 张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
[12] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[13] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[14] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[15] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed