Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 20100151-11    https://doi.org/10.11896/cldb.20100151
  无机非金属及其复合材料 |
三维打印技术在电化学储能器件中的应用研究进展
胡竟志1,2, 徐照华1,2, 沈超1,2, 谢科予1,2,*
1 西北工业大学深圳研究院,广东 深圳 518057
2 西北工业大学材料学院,西安 710072
Applying Three-dimensional Printing to Electrochemical Energy Storage Devices: a Review
HU Jingzhi1,2, XU Zhaohua1,2, SHEN Chao1,2, XIE Keyu1,2,*
1 Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057,Guangdong, China
2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
下载:  全 文 ( PDF ) ( 6023KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三维打印作为一种新型的加工工艺,其独有的复杂形状定制、快速成型的特点使得其正成为电化学储能器件设计与制造领域的研究热点。目前,基于多种三维打印工艺,已经可以初步实现储能器件电极、电解质的打印构筑,且所打印器件在微型化与集成应用等方面均表现出传统工艺难以实现的独特优势。
然而,可打印材料的匮乏是目前阻碍三维打印电化学储能器件进一步发展的关键问题。现有的商用可打印材料多为结构材料,其较低的电导率与电化学活性难以满足电化学储能器件的实际应用需求。因此,近年来,研究者们从三维打印的工艺原理出发,通过合理的墨水设计,直接或间接地实现了多种电化学储能器件的打印构筑,所打印器件也表现出较为优异的电化学性能。在此基础上,利用三维打印在复杂结构快速成型方面的优势,研究者们可以根据产品需求,通过结构设计与优化,实现电极、电解质等部件在电化学活性以及力学性能方面的提升,获得具备柔性化、微型化等特征的高性能储能器件。
本文全面综述了三维打印技术在储能器件领域的应用研究进展。首先,总结了各类三维打印技术的基本原理以及基于三维打印的电极、电解质设计与构筑的研究现状;其次,讨论了三维打印储能器件在可穿戴设备以及微型电子器件集成等方面的应用案例;最后,结合实际应用需求,分析了三维打印储能器件制备过程中存在的问题及研究方向,以期为三维打印在电化学储能器件领域的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡竟志
徐照华
沈超
谢科予
关键词:  三维打印  锂离子电池  超级电容器  电极  电解质    
Abstract: 3D printing is a promising advanced technology in the design and manufacturing of energy storage devices due to its superiority in shape customization and rapid manufacturing. Up to now, various electrodes and electrolytes are printed via different printing methods and showing their unique advantages in device miniaturization and integration, which is difficult by conventional fabrication.
However, the lack of printable materials is the bottleneck for the further development of printed energy storage devices. Current commercial printable materials are used as structural materials, but their poor performance in conductivity and electrochemical activation prevents its application in energy storage devices. To address this problem, researchers were committed to designing and developing reasonable ink according to the printing principle, and different types of batteries and supercapacitors with remarkable performance were printed successfully. Moreover, the 3D printing technology offers unprecedented opportunities in structure design and optimization, which can further improve the electrochemical and mechanical properties of devices, obtaining high-performance energy storage devices with flexible and miniaturization characteristics.
Herein, the recent advances of 3D printing for energy storage devices are reviewed. The basic principle of 3D printing technology and the research progress of printed electrode and electrolyte materials are first summarized. Then the application of 3D printed devices in wearable devices, micro-electronics, and other aspects are discussed. Finally, this paper analyzes the problems and future development direction of 3D printed energy storage devices, expecting to provide the reference for the application of 3D printing in energy storage devices.
Key words:  three-dimensional printing    lithium-ion battery    supercapacitor    electrode    electrolyte
发布日期:  2022-10-26
ZTFLH:  TQ152  
基金资助: 深圳市基础研究学科布局(JCYJ20180508151856806);西北工业大学博士学位论文创新基金(CX201944)
通讯作者:  *kyxie@nwpu.edu.cn   
作者简介:  胡竟志,2015年6月毕业于西北工业大学,获得工学学士学位。现为西北工业大学纳米能源材料研究中心博士研究生,在谢科予教授的指导下进行研究。目前主要研究领域为三维打印微型超级电容器。
谢科予,本硕博均就读于中南大学,现为西北工业大学教授、博士研究生导师,陕西省石墨烯联合实验室副主任,西北工业大学材料前沿交叉研究中心主任。主要从事能源材料以及三维打印技术的相关研究,在包括Advanced Mate-rials、 Nano LettersEnergy & Environmental ScienceAngewandte Chemie International EditionApplied Physics Reviews等在内的高水平SCI期刊上发表学术论文90余篇,撰写英文专著1章,申请发明专利30余项,已授权19余项。
引用本文:    
胡竟志, 徐照华, 沈超, 谢科予. 三维打印技术在电化学储能器件中的应用研究进展[J]. 材料导报, 2022, 36(20): 20100151-11.
HU Jingzhi, XU Zhaohua, SHEN Chao, XIE Keyu. Applying Three-dimensional Printing to Electrochemical Energy Storage Devices: a Review. Materials Reports, 2022, 36(20): 20100151-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100151  或          http://www.mater-rep.com/CN/Y2022/V36/I20/20100151
1 Costa C M, Goncalves R, Lanceros-Mendez S. Energy Storage Materials, 2020, 28, 216.
2 Kyeremateng N A, Brousse T, Pech D. Nature Nanotechnology,2017,12(1),7.
3 Ngo T D, Kashani A, Imbalzano G, et al. Composites Part B-Enginee-ring, 2018, 143, 172.
4 Mehrpouya M, Dehghanghadikolaei A, Fotovvati B, et al. Applied Sciences-Basel, 2019, 9(18), 3865.
5 Oztemel E, Gursev S. Journal of Intelligent Manufacturing, 2020, 31(1), 127.
6 Lee J Y, An J, Chua C K. Applied Materials Today, 2017, 7, 120.
7 Lee V K, Kim D Y, Ngo H, et al. Biomaterials, 2014, 35(28), 8092.
8 Ford S, Minshall T. Additive Manufacturing, 2019, 25, 131.
9 Sun H, Zhu J, Baumann D, et al. Nature Reviews Materials, 2018, 4(1), 45.
10 Zhu C, Qi Z, Beck V A, et al. Science Advances, 2018, 4(8), eaas9459.20100151-20100151-
11 Long J W, Dunn B, Rolison D R, et al. Chemical Reviews, 2004, 104(10), 4463.
12 Lethien C, Le Bideau J, Brousse T. Energy & Environmental Science, 2019, 12(1), 96.
13 Chen K, Gao W, Emaminejad S, et al. Advanced Materials, 2016, 28(22), 4397.
14 Kwon J, Takeda Y, Shiwaku R, et al. Nature Communications, 2019, 10(1), 54.
15 Egorov V, Gulzar U, Zhang Y, et al. Advanced Materials, 2020, 32(29), e2000556.
16 Tian X C, Jin J, Yuan S Q, et al. Advanced Energy Materials, 2017, 7(17), 1700127.
17 Ervin M H, Le L T, Lee W Y. Electrochimica Acta, 2014, 147, 610.
18 Maurel A, Courty M, Fleutot B, et al. Chemistry of Materials, 2018, 30(21), 7484.
19 Maurel A, Grugeon S, Fleutot B, et al. Scientific Reports, 2019, 9(1), 18031.
20 Foster C W, Down M P, Zhang Y, et al. Scientific Reports, 2017, 7, 42233.
21 Maurel A, Armand M, Grugeon S, et al. Journal of The Electrochemical Society, 2020, 167(7), 070536.
22 Foo C Y, Lim H N, Mahdi M A, et al. Scientific Reports, 2018, 8(1), 7399.
23 Zhang C F, Kremer M P, Seral-Ascaso A, et al. Advanced Functional Materials, 2018, 28(9), 1705506.
24 Lewis J A. Advanced Functional Materials, 2006, 16(17), 2193.
25 Sun K, Wei T S, Ahn B Y, et al. Advanced Materials, 2013, 25(33), 4539.
26 Fu K, Wang Y, Yan C, et al. Advanced Materials,2016,28(13),2587.
27 Li W B, Li Y H, Su M, et al. Journal of Materials Chemistry A, 2017, 5(31), 16281.
28 Gao T, Zhou Z, Yu J, et al. Advanced Energy Materials, 2019, 9(8), 1802578.
29 Shen K, Ding J W, Yang S B. Advanced Energy Materials, 2018, 8(20), 1800408.
30 Shen K, Mei H, Li B, et al. Advanced Energy Materials, 2018, 8(4), 1701527.
31 Gao X J, Sun Q, Yang X F, et al. Nano Energy, 2019, 56, 595.
32 Lyu Z, Lim G J H, Guo R, et al. Advanced Functional Materials, 2019, 29(1), 1806658.
33 Qiao Y, Liu Y, Chen C J, et al. Advanced Functional Materials, 2018, 28(51), 1805899.
34 Blake A J, Kohlmeyer R R, Hardin J O, et al. Advanced Energy Mate-rials, 2017, 7(14), 1602920.
35 Cheng M, Jiang Y, Yao W, et al. Advanced Materials, 2018, 30(39), e1800615.
36 Mcowen D W, Xu S, Gong Y, et al. Advanced Materials, 2018, 30(18), e1707132.
37 Derby B. Annual Review of Materials Research, 2010, 40(1), 395.
38 Yang P H, Fan H J. Advanced Materials Technologies, 2020, 2000217.
39 Choi K H, Yoo J, Lee C K, et al. Energy & Environmental Science, 2016, 9(9), 2812.
40 Wang Y, Zhang Y Z, Dubbink D, et al. Nano Energy, 2018, 49, 481.
41 Chen Q, Xu R, He Z, et al. Journal of The Electrochemical Society, 2017, 164(9), A1852.
42 Park S H, Kaur M, Yun D, et al. Langmuir, 2018, 34(37), 10897.
43 Xue J Z, Gao L, Hu X K, et al. Nano-Micro Letters, 2019, 11(1), 46.
44 Zekoll S, Marriner-Edwards C, Hekselman A K O, et al. Energy & Environmental Science, 2018, 11(1), 185.
45 Wilkinson N J, Smith M A A, Kay R W, et al. The International Journal of Advanced Manufacturing Technology, 2019, 105(11), 4599.
46 Deiner L J, Jenkins T, Powell A, et al. Advanced Engineering Materials, 2019, 21(5), 1801281.
47 Deiner L J, Jenkins T, Howell T, et al. Advanced Engineering Materials, 2019, 21(12), 1900952.
48 Azhari A, Marzbanrad E, Yilman D, et al. Carbon, 2017, 119, 257.
49 Zhao C, Wang C, Gorkin R, et al. Electrochemistry Communications, 2014, 41, 20.
50 Xu B, Wu X Y, Lei J G, et al. The International Journal of Advanced Manufacturing Technology, 2015, 80(9-12), 1701.
51 You R, Liu Y Q, Hao Y L, et al. Advanced Materials, 2020, 32(15), e1901981.
52 Wu Z S, Parvez K, Feng X, et al. Nature Communications, 2013, 4, 2487.
53 Yao B, Chandrasekaran S, Zhang J, et al. Joule, 2019, 3(2), 459.
54 Naficy S, Jalili R, Aboutalebi S H, et al. Materials Horizons, 2014, 1(3), 326.
55 Zhang X, Zhang Z H, Zhou Z. Journal of Energy Chemistry, 2018, 27(1), 73.
56 Quain E, Mathis T S, Kurra N, et al. Advanced Materials Technologies, 2019, 4(1), 1800256.
57 Jiang X T, Li W J, Hai T, et al. NPJ 2D Materials and Applications, 2019, 3(1), 34.
58 Li X, Li H, Fan X, et al. Advanced Energy Materials, 2020, 10(14), 1903794.
59 Zhang C J, Mckeon L, Kremer M P, et al. Nature Communications, 2019, 10(1), 1795.
60 Lin Y, Gao Y, Fan Z. Advanced Materials, 2017, 29(43), 1701736.
61 Sajedi-Moghaddam A, Rahmanian E, Naseri N. ACS Applied Materials & Interfaces, 2020, 12(31), 34487.
62 Manapat J Z, Chen Q Y, Ye P, et al. Macromolecular Materials and Engineering, 2017, 302(9), 1600553.
63 Zhang F, Wei M, Viswanathan V V, et al. Nano Energy, 2017, 40, 418.
64 Chen J, Mishra S, Vaca D, et al. Nanotechnology, 2020, 31(23), 235301.
65 Cao C, Andrews J B, Franklin A D. Advanced Electronic Materials, 2017, 3(5), 1700057.
66 Bag S, Deneault J R, Durstock M F. Advanced Energy Materials, 2017, 7(20), 1701151.
67 Williams B A, Mahajan A, Smeaton M A, et al. ACS Appl Mater Interfaces, 2015, 7(21), 11526.
68 Famprikis T, Canepa P, Dawson J A, et al. Nature Materials, 2019, 18(12), 1278.
69 Pang Y K, Cao Y T, Chu Y H, et al. Advanced Functional Materials, 2020, 30(1), 1906244.
70 Kim J, Kumar R, Bandodkar A J, et al. Advanced Electronic Materials, 2017, 3(1), 1600260.
71 Chen C, Jiang J, He W, et al. Advanced Functional Materials, 2020, 30(10), 1909469.
72 Bao Y, Liu Y, Kuang Y, et al. Energy Storage Materials,2020,33,55.
73 Li R, Li L, Jia R, et al. Small Methods, 2020, 4(9), 2000363.
74 Lee K H, Lee S S, Ahn D B, et al. Science Advances,2020,6(10),eaaz1692.
75 Park J, Ahn D B, Kim J, et al. Science Advances,2019,5(12),eaay0764.
[1] 易聪, 王佳仪, 袁伟, 张东煜, 苏文明, 崔铮, 孙立涛. 基于褶皱结构可拉伸织物电极的制备与应用[J]. 材料导报, 2022, 36(Z1): 21110214-6.
[2] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[3] 赵玉辉, 张雅荣, 吴勇民, 朱蕾, 郭俊, 汤卫平. NASICON结构Na3Zr2Si2PO12固体电解质研究进展[J]. 材料导报, 2022, 36(Z1): 21050235-9.
[4] 谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
[5] 侯朝霞, 王凯, 屈晨滢, 李思瑶, 王晓慧, 王健, 王美涵. 柔性二次电池的研究进展[J]. 材料导报, 2022, 36(9): 20070276-6.
[6] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[7] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[8] 张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
[9] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[10] 姚诗言, 曾立艳, 刘军. 高性能锂金属电池负极结构设计及界面强化研究进展[J]. 材料导报, 2022, 36(16): 21010216-11.
[11] 牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
[12] 宋子威, 于燕, 朱义新, 刘臻. PREP法制备CoCrMoW合金粉末的特性及显微组织[J]. 材料导报, 2022, 36(10): 19060192-5.
[13] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[14] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[15] 王心桥, 张健, 苏彤, 赵兴, 郭永权. 先进液态金属电池熔盐电解质的设计[J]. 材料导报, 2022, 36(1): 20090223-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed