Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21050021-7    https://doi.org/10.11896/cldb.21050021
  金属与金属基复合材料 |
新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究
牛晓勤1,†, 康小雅2,†, 马应霞2, 王嘉伟2, 陈新权2, 田虎2, 陈玉红1, 冉奋2
1 兰州理工大学石油化工学院,兰州 730050
2 兰州理工大学材料科学与工程学院,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Fabrication and Electrochemical Properties of Novel Spherical Ni/Co-MOFs as Electrode Materials
NIU Xiaoqin1,†, KANG Xiaoya2,†, MA Yingxia2, WANG Jiawei2, CHEN Xinquan2, TIAN Hu2, CHEN Yuhong1, RAN Fen2
1 School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 4474KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属有机框架(Metal-organic frameworks, MOFs)材料作为一种电化学活性材料受到了人们的广泛关注。本工作利用简单的一锅法以1,3,5-苯三甲酸(H3BTC)为有机配体、六水合氯化镍(NiCl2·6H2O)和六水合硝酸钴(Co(NO3)2·6H2O)为金属离子中心来源,通过简单的一步溶剂热法构筑镍/钴金属有机框架材料(Ni/Co-MOFs)。通过扫描电子显微镜 (SEM)、粉末X射线衍射仪 (XRD)、X射线光电子能谱 (XPS)和Brunauer-Emmett-Teller (BET)法等对Ni/Co-MOFs样品的微观形貌、结构组成进行了表征,并采用循环伏安、恒流充放电和电化学阻抗法测试了制备的Ni/Co-MOFs电极材料的电化学性能。结果表明,新型球状Ni/Co-MOFs被成功地构筑。室温下,在6 mol/L KOH电解质中,恒定电流密度为0.5 A/g时,Ni/Co-MOFs电极材料的比电容为779 F/g;当电流密度增大至5 A/g时,Ni/Co-MOFs能够保持初始电容的79%。此外,以Ni/Co-MOFs为正极、活性炭(AC)为负极组装了非对称超级电容器,Ni/Co-MOFs‖AC 非对称超级电容器器件在电流密度为0.5 A/g时的比电容为107 F/g,在功率密度为400 W/kg时的能量密度为38 Wh/kg,经过10 000次连续的充放电循环后,该器件能够保留初始比电容的65.71%。上述研究结果表明,所制备的Ni/Co-MOFs在储能器件领域具有潜在的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛晓勤
康小雅
马应霞
王嘉伟
陈新权
田虎
陈玉红
冉奋
关键词:  Ni/Co-MOFs  超级电容器  电极材料  电化学性能    
Abstract: Metal-organic frameworks (MOFs) materials have aroused tremendous attention and been used as electrochemically active materials. In this work, a new electrode material of nickel/cobalt metal-organic frameworks (Ni/Co-MOFs) was fabricated by a facile one-pot solvothermal reaction using 1, 3, 5-benzenetricarboxylic acid (H3BTC) as the organic ligand, and nickel chloride hexahydrate (NiCl2·6H2O) and cobalt nitrate hexahydrate (Co(NO3)2·6H2O) as the central of metal ions. The microscopic morphology and structural composition of the Ni/Co-MOFs sample were characterized by SEM, XRD, XPS and BET, and the electrochemical performances were tested by cyclic voltammetry, galvanosta-tic charging-discharging and electrochemical impedance spectra methods. The results indicate that the novel spherical Ni/Co-MOFs is successfully fabricated. The prepared Ni/Co-MOFs exhibits the specific capacitance of 779 F/g at the current density of 0.5 A/g in 6 mol/L KOH electrolyte, and the capacitance retention remains 79% after the current density increases to 5 A/g. Furthermore, the asymmetric supercapacitor of Ni/Co-MOFs‖AC assembled using Ni/Co-MOFs as the positive electrode and activated carbon as the negative electrode possesses the specific capacitance of 107 F/g at the current density of 0.5 A/g. The asymmetric supercapacitors device delivers a satisfied energy storage capacity with the energy density of 38 Wh/kg at the power density of 400 W/kg, and the desired cycling stability of 65.71% after 10 000 cycles sequential charging-discharging. As such, it is believed that the prepared Ni/Co-MOFs have potential applications as electrode materials in the energy storage devices.
Key words:  Ni/Co-MOFs    supercapacitor    electrode material    electrochemical performance
发布日期:  2022-07-26
ZTFLH:  O646  
基金资助: 沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金(18LHPY005);国家自然科学基金(51763014;52073133)
通讯作者:  mayx2011818@163.com; ranfen@163.com   
作者简介:  共同第一作者。
牛晓勤,博士研究生,2014年在兰州理工大学获得硕士学位。主要研究方向为有机/金属材料的制备及应用研究。
康小雅,2018年6月毕业于兰州理工大学,获得工学学士学位。现为兰州理工大学材料科学与工程学院硕士研究生,在马应霞教授的指导下进行研究。目前主要从事金属有机骨架材料的电化学性能研究。
马应霞,兰州理工大学教授。2012年6月毕业于兰州大学,获得博士学位。主要从事有机/无机纳米杂化材料的构筑、表征和性能研究。主持并完成国家自然科学基金、中国博士后科学基金、甘肃省自然科学基金等科研项目,在Carbon、Journal of Hazardous Materials和Journal of Colloid and Interface Science 等国内外重要刊物发表学术论文30余篇。
冉奋,教授、博士研究生导师、四川大学高分子材料工程国家重点实验室博士, 2013年新加坡国立大学访问研究员、2015年美国加州大学圣克鲁斯分校访问学者。担任中国生物材料学会血液净化材料分会委员,InfoMatEnergy & Environmental Materials、《材料导报》《电子元件与材料》等期刊的青年编委、执行编委或编委。主要从事新型能源材料和生物医用高分子的研究。公开发表学术论文100余篇。
引用本文:    
牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
NIU Xiaoqin, KANG Xiaoya, MA Yingxia, WANG Jiawei, CHEN Xinquan, TIAN Hu, CHEN Yuhong, RAN Fen. Fabrication and Electrochemical Properties of Novel Spherical Ni/Co-MOFs as Electrode Materials. Materials Reports, 2022, 36(14): 21050021-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050021  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21050021
1 Liang Z B, Qin T J, Gao S, et al. Advanced Energy Materials, 2021, 12(4), 2003410.
2 Sun H Y, Gao J Y, Pan C. Materials Reports B:Research Papers, 2020, 34(4), 4007(in Chinese).
孙宏宇, 高静怡, 潘超. 材料导报:研究篇, 2020, 34(2), 4007.
3 Pei H B, Mo Z L, Guo R B, et al. Materials Reports A:Review Papers, 2020, 34(11), 21093(in Chinese).
裴贺兵, 莫尊理, 郭瑞斌, 等. 材料导报:综述篇, 2020, 34(11), 21093.
4 Yu C X, Chen J, Zhang Y, et al. Journal of Alloys and Compounds, 2021, 853, 157383.
5 Lashgaria M, Yaria H, Mahdaviana M, et al. Journal of Hazardous Materials, 2021, 404, 124068.
6 Yang H N, Ji S J, Yin J P, et al. Journal of Colloid and Interface Science, 2021, 586, 381.
7 Yin X M, Li H J, Yuan R M, et al. Journal of Colloid and Interface Science, 2021, 586, 219.
8 Zhou J, Yang M L. Materials Reports A:Review Papers, 2020, 34(10), 19043(in Chinese).
周杰, 杨明莉. 材料导报:综述篇, 2020, 34(10), 19043.
9 Deng T, Shi X Y, Zhang W, et al. Nanotechnology, 2021, 32(7), 075402.
10 Xu Y X, Li Q, Xue H G, et al. Coordination Chemistry Reviews, 2018, 376, 292.
11 Yang J, Xiong P X, Zheng C, et al. Journal of Materials Chemistry A, 2014, 2(39), 16640.
12 Choi K M, Jeong M H, Park J H, et al. ACS Nano, 2014, 8(7), 7451.
13 Zhu G L, Wen H, Ma M, et al. Chemical Communications, 2018, 54(74), 10499.
14 Du P C, Donng Y M, Liu C, et al. Journal of Colloid and Interface Science, 2018, 518, 57.
15 Jiao Y, Pei J, Chen D H, et al. Journal of Materials Chemistry A, 2017, 5, 1094.
16 Gao S W, Sui Y W, Wei F X, et al. Journal of Colloid and Interface Science, 2018, 531, 83.
17 Liu X X, Shi C D, Zhai C W, et al. ACS Applied Materials & Interfaces, 2016, 8, 4585.
18 Qu C, Jiao Y, Zhao B T, et al. Nano Energy, 2016, 26, 66.
19 He S H, Li Z P, Wang J Q, et al. RSC Advances, 2016, 6(55), 49478.
20 Xu F, Chen N, Fan Z Y, et al. Applied Surface Science, 2020, 528, 146920.
21 Cheng Q H, Tao K, Han X, et al. Dalton Transactions, 2019, 48, 4119.
22 Meng F L, Fang Z G, Li Z X, et al. Journal of Materials Chemistry A, 2013, 1(24), 7235.
23 He X Y, Li R M, Liu J Y, et al. Chemical Engineering Journal, 2018, 334, 1573.
24 Yang J, Yu C, Fan X M, et al. Advanced Functional Materials, 2015, 25(14), 2109.
25 Ran F T, Xu X Q, Pan D, et al. Nano-Micro Letters,2020,12(1),46.
26 Zhou P, Wan J F, Wang X R, et al. Journal of Colloid and Interface Science, 2020, 575, 96.
27 Chen Y X, Ni D, Yang X W, et al. Electrochimica Acta, 2018, 278, 114.
28 Afzal A, Abuilaiwi F A, Habib A, et al. Journal of Power Sources, 2017, 352, 174.
29 Yang J, Fan X M, Liang S X, et al. Energy & Environmental Science, 2016, 9(4), 1299.
30 Liu F, Zeng L L, Chen Y K, et al. Nano Energy, 2019, 61, 18.
31 Xu X L, Shi W H, Li P, et al. Chemistry of Materials, 2017, 29(14), 6058.
32 Zhang X, Wang J M, Liu J, et al. Carbon, 2017, 115, 134.
33 Zhang X L, Sui Y W, Wei F X, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(19), 18101.
34 Cao F F, Gan M Y, Ma L, et al. Synthetic Metals, 2017, 234, 154.
35 Xia H C, Zhang J N, Yang Z, et al. Nano-Micro Letters, 2017, 9(4), 43.
36 Owusu K A, Qu L B, Li J T, et al. Nature Communications, 2017, 8(1), 14264.
37 Shin S, Shin M W. Applied Surface Science, 2021, 540, 148295.
38 Guan B, Li Y, Yin B Y, et al. Chemical Engineering Journal, 2017, 308, 1165.
39 Azadfalah M, Sedghi A, Hosseini H. Journal of Materials Science: Materials in Electronics, 2019, 30(13), 12351.
40 Xu C, Feng Y, Mao Z M, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(21), 19477.
[1] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[2] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[3] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[4] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[5] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[6] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[7] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[8] 魏满想, 高思睿, 刘宏亮, 王鑫, 付海朋, 何立子. Sn对Al-Mg-Ga-Sn阳极合金电化学性能的影响[J]. 材料导报, 2021, 35(Z1): 311-314.
[9] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[10] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[11] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[12] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[13] 陈浩伟, 余先纯, 张传艳, 李銮玉, 孙德林, 郝晓峰. 木质素基模板炭的制备及电化学性能[J]. 材料导报, 2021, 35(24): 24164-24171.
[14] 唐琴, 周大利, 陈先勇. 清江河虾头胸甲基富氮/氧分级多孔叠炭片的制备及电化学性能[J]. 材料导报, 2021, 35(22): 22016-22021.
[15] 于濂清, 杨钱龙, 朱海丰, 段丽杰, 赵兴雨, 王艳坤. 氢还原氢氟酸刻蚀的TiO2纳米薄膜光电化学性能[J]. 材料导报, 2021, 35(20): 20001-20004.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed