Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22016-22021    https://doi.org/10.11896/cldb.20090257
  无机非金属及其复合材料 |
清江河虾头胸甲基富氮/氧分级多孔叠炭片的制备及电化学性能
唐琴1,2,3, 周大利3, 陈先勇1,2
1 生物资源保护与利用湖北重点实验室,恩施 445000
2 湖北民族大学化学与环境工程学院,恩施 445000
3 四川大学材料科学与工程学院,成都 610064
Preparation of Rich N/O Co-doped Hierarchical Porous Laminated Carbon Derived from the Carapace of Qing River Shrimp and Its Electrochemical Performance
TANG Qin1,2,3, ZHOU Dali3, CHEN Xianyong1,2
1 Key Laboratory of Biologic Resource Protection and Utilization of Hubei Province, Enshi 445000, China
2 School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
3 School of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
下载:  全 文 ( PDF ) ( 3253KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以废弃的清江河虾头胸甲为原材料,采用简便的一步二氧化碳炭化活化处理工艺,使头胸甲中的部分氮/氧元素以原位掺杂的形式保留,同时以头胸甲叠层中均匀分布的碳酸钙作为原位模板,快速制得富氮/氧共掺杂分级多孔叠层炭片材料。用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、激光拉曼光谱仪和比表面积测定仪等对样品进行了表征。结果显示,富氮/氧共掺杂分级多孔叠层炭片具有相互贯通的“特大孔-大孔-介孔-微孔”多级孔道,并具有高的比表面积(1 012.2 m2/g)和孔体积(0.975 cm3/g)、高的氮含量 9.15%(质量分数)和氧含量26.0%(质量分数)。基于这些独特的结构特征,头胸甲基叠层生物多孔炭展现出优异的电化学性能:在电流密度为0.5 A/g 时,最高质量比电容高达380.2 F/g;当电流密度增加到10 A/g时, 质量比电容仍有187.5 F/g,说明该电极具有较好的倍率性能。在10 A/g的充放电电流密度下循环5 000次后,头胸甲基叠层生物多孔炭的容量保持率高达93.6%。优良的电容性能显示废弃的清江河虾头胸甲在超级电容器电极材料方面具有很好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐琴
周大利
陈先勇
关键词:  氮/氧共掺杂  分级多孔结构  碳酸钙  电化学性能    
Abstract: Rich N/O co-doped hierarchical porous laminated carbon was successfully prepared via one-step carbonization combined with CO2 activation approach, using the wasted carapaces of Qing River shrimp as raw materials. Parts of N and O elements were kept in the form of in-situ doping, and calcium carbonate with uniform distribution in the carapace was used as in-situ template during the process of preparation. The samples were investigated by varied means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectrometer (XPS), laser Raman spectrometer and specific surface area measuring instrument, respectively. The results indicated that the obtained rich N/O co-doped hierarchical porous laminated carbon contained interconnected super-macropores, macropores, mesopores and micropores. The specific surface area and total pore volume of the obtained hierarchical porous laminated carbon are 1 012.2 m2/g and 0.975 cm3/g, respectively. The content of in-situ doped nitrogen is up to 9.15%, and oxygen content is as high as 26%. Benefiting from these unique features, the rich N/O co-doped hierarchical porous laminated carbon pile-based electrode materials exhibited excellent electrochemical performances. The specific capacitance reaches 385 F/g at a current density of 0.5 A/g, and even possesses 187.5 F/g at 10 A/g in 1mol/L Na2SO4 electrolyte. The specific capacitance can still maintain up to 93.6% after 5 000 cycles at a high current density of 10 A/g. The excellent capacitive performances indicate that the wasted carapace of Qing River shrimp can serve as a new resource of rich N/O co-doped hierarchical porous carbon materials for high performance of supercapacitors.
Key words:  nitrogen/oxygen co-doping    hierarchical porous structure    calcium carbonate    electrochemical performance
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  O646.54  
基金资助: 国家自然科学基金项目 (21661012);生物资源保护与利用湖北重点实验室项目(PKLHB1711)
通讯作者:  tqhbmd@163.com   
作者简介:  唐琴, 博士,湖北民族大学化学与环境工程学院副教授, 主要从事功能材料的制备及应用研究。
引用本文:    
唐琴, 周大利, 陈先勇. 清江河虾头胸甲基富氮/氧分级多孔叠炭片的制备及电化学性能[J]. 材料导报, 2021, 35(22): 22016-22021.
TANG Qin, ZHOU Dali, CHEN Xianyong. Preparation of Rich N/O Co-doped Hierarchical Porous Laminated Carbon Derived from the Carapace of Qing River Shrimp and Its Electrochemical Performance. Materials Reports, 2021, 35(22): 22016-22021.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090257  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22016
1 Zhang Y Q, Liu X, Wang S L, et al. Advanced Energy Materials, 2017, 7, 1700592.
2 Chen H P, Xia M W, Chen Y Q, et al. Proceedings of the CSEE, 2019, 39(3), 885(in Chinese).
陈汉平, 夏明巍, 陈应泉, 等.中国机电工程学报,2019,39(3),885.
3 Yu D F, Chen C, Zhao G Y, et al. ChemSusChem, 2018, 11, 1678.
4 Sun H Y,Gao J Y,Pan C. Materials Reports B: Research Papers, 2020, 34(2), 04007(in Chinese).
孙宏宇, 高静怡, 潘超.材料导报:研究篇, 2020, 34(2), 04007.
5 Hu L F, Zhu Q Z, Wu Q, et al. ACS Sustainable & Chemistry Enginee-ring, 2018, 6, 13949.
6 Wang Y Y, Hou B H, Lu H Y, et al. Chemistry Select, 2016, 1, 1441.
7 Kang W W, Huang G X, Zhang C X, et al. Materials Reports B:Research Papers, 2015, 29(10), 18 (in Chinese)
康伟伟, 黄光许, 张传祥, 等. 材料导报:研究篇,2015,29(10),18.
8 Zhang Y, Gao H P, Song X L, et al. ChemElectroChem, 2019, 6, 5486.
9 Li Y Y, Wang L, Gao B, et al. Electrochimica Acta, 2017, 229, 352.
10 Ma G F, Hu F T, Sun K J, et al. RSC Advances, 2016, 6, 103508.
11 Yin S, Zhu L J, Liu Y C, et al. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (12), 306(in Chinese).
殷实, 朱玲君, 刘银聪, 等. 农业机械学报, 2017, 48(12), 306.
12 Song J, Shen W Z, Wang J G, et al. ChemElectroChem,2018,5,1451.
13 Wang T Z, Wang H. Scientia Sinica Chimica, 2019, 49 (5), 729(in Chinese).
王同洲, 王鸿. 中国科学: 化学, 2019, 49(5), 729.
14 Chen X F, Zhang J Y, Zhang B, et al. Scientific Reports,2017,7(1),1.
15 Gao M Y, Shi C C, Pan S Y, et al. Journal of Materials Chemistry A, 2018, 6, 20546.
16 Zhang M C, Zang H J, Yu S B, et al. Chemical Industry and Enginee-ring Progress,2017, 36(3), 863(in Chinese).
张明川, 臧洪俊, 余松柏, 等. 化工进展, 2017, 36(3). 863.
17 Yuan G Q, Li W W, Pan Y X, et al. Food Bioscience,2018,25(7),52.
18 Qu J Y, Geng C, Lv S Y, et al. Electrochimica Acta, 2015, 176, 982.
19 Liu R R, Zhang H M, Liu S W, et al. Physical Chemistry Chemical Physics, 2016, 18, 4095.
20 Li J J, Yang Z J, Zhao L, et al. Chinese Science Bulletin, 2018, 63(35), 3843(in Chinese).
栗敬敬, 杨照瑾, 赵丽, 等. 科学通报, 2018, 63(35), 3843.
21 Qiao S, Sun G W, Zhang J H, et al. Carbon Techniques, 2010, 29(1), 14(in Chinese).
乔松, 孙刚伟, 张建华,等. 炭素技术, 2010, 29(1), 14.
22 Wang D W, Li F, Liu M, et al. Angewandte Chemie International Edition, 2008, 47(2), 373.
23 Zhang S J, Huang G X, Xing B L, et al. Materials Reports B:Research Papers, 2016, 30(1), 28(in Chinese).
张双杰, 黄光许, 邢宝林, 等. 材料导报:研究篇,2016,30(1),28.
24 Liu M J, Fu D M, Wang C L, et al. New Carbon Materials, 2017, 32(2), 123(in Chinese).
刘美君, 付冬梅, 王春雷, 等. 新型炭材料, 2017,32(2),123.
25 Zhang C Y, Zhu X H, Cao M, et al. ChemSusChem, 2016, 9, 932.
26 Fu M, Chen W, Zhu X X, et al. Carbon, 2019, 141, 748.
27 Li Z W, Zhong J L, Chen N N, et al. Acta Chimica Sinica, 2018, 76(3), 209(in Chinese).
李志伟, 仲佳亮, 陈楠楠, 等. 化学学报, 2018, 76(3), 209.
28 Tian Y X, Xiao C Y, Yin J, et al. Chemistry Select, 2019, 4, 2314.
29 Sun J M, E L, Ma C H, et al. Chemistry and Industry of Forest Products, 2018, 38(4), 20(in Chinese).
孙佳明, 鄂雷,马春慧,等. 林产化学与工业, 2018, 38(4), 20.
30 Zhang J, Wang G Q, Zhuo S P. Journal of Functional Materials, 2015, 46 (23), 23085(in Chinese).
张娟, 王桂强, 禚淑萍. 功能材料, 2015, 46(23), 23085.
31 Xu W J, Qiu D P, Liu S Q, et al. Journal of Inorganic Materials, 2019, 34(6), 625(in Chinese).
许伟佳, 邱大平, 刘诗强, 等. 无机材料学报, 2019, 34(6), 625.
32 Zhang G X, Chen H Y, Liu W, et al. Materials Letters,2016,185,359.
33 Li Y, Liu Q L, Kang D M, et al. Journal of Materials Chemistry A,2015, 3, 21016.
34 Hu Y J, Tong X, Zhuo H, et al. RSC Advances, 2016, 6, 15788.
35 Huang J Y, Liu S M, Peng Z F, et al. New Journal of Chemistry, 2019, 43, 19372.
36 Wang G Q, Liu J Q, Dong W N, et al. Acta Physica Sinica, 2018, 67(23), 238103(in Chinese).
王桂强, 刘洁琼, 董伟楠, 等. 物理学报, 2018, 67(23), 238103.
[1] 魏满想, 高思睿, 刘宏亮, 王鑫, 付海朋, 何立子. Sn对Al-Mg-Ga-Sn阳极合金电化学性能的影响[J]. 材料导报, 2021, 35(Z1): 311-314.
[2] 王玉娇, 江海涛, 张韵, 王盼盼, 于博文, 徐哲. 镁合金海水电池阳极材料电化学性能研究进展[J]. 材料导报, 2021, 35(9): 9041-9048.
[3] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[4] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[5] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[6] 徐晶, 唐一洪, 王先志. 微生物沉积优化与混凝土自修复条件的相关性研究[J]. 材料导报, 2021, 35(22): 22039-22044.
[7] 于濂清, 杨钱龙, 朱海丰, 段丽杰, 赵兴雨, 王艳坤. 氢还原氢氟酸刻蚀的TiO2纳米薄膜光电化学性能[J]. 材料导报, 2021, 35(20): 20001-20004.
[8] 余嵘, 刘扬, 王增科, 田昭, 吕芙蓉. SAS/AMPS/IA共聚物中官能团对碳酸钙的协同阻垢作用[J]. 材料导报, 2021, 35(2): 2207-2212.
[9] 鲍艳, 丁颖, 唐培, 康巧玲. 水性醇酸树脂/中空TiO2微球复合涂层的性能[J]. 材料导报, 2021, 35(18): 18200-18204.
[10] 陈沁文, 苏依林, 李敏, 钱春香. 基于碳酸钙标记的水泥基材料裂缝自修复表征[J]. 材料导报, 2021, 35(14): 14045-14051.
[11] 魏安柯, 王磊, 王祎. 金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展[J]. 材料导报, 2021, 35(13): 13052-13057, 13066.
[12] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[13] 孙道胜, 许婉钰, 刘开伟, 欧阳金至, 王爱国. MICP在建筑领域中的应用进展[J]. 材料导报, 2021, 35(11): 11083-11090.
[14] 张硕. 利用纳米碳酸钙为模板制备二氧化硅空心微球[J]. 材料导报, 2020, 34(Z2): 91-94.
[15] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed