Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11083-11090    https://doi.org/10.11896/cldb.20100019
  无机非金属及其复合材料 |
MICP在建筑领域中的应用进展
孙道胜1,2, 许婉钰2, 刘开伟1,2,*, 欧阳金至2, 王爱国1,2
1 安徽省先进建筑材料重点实验室,合肥 230022;
2 安徽建筑大学材料与化学工程学院,合肥 230601
Research Progress of the Application of MICP in Architecture
SUN Daosheng1,2, XU Wanyu2, LIU Kaiwei1,2,*, OUYANG Jinzhi2, WANG Aiguo1,2
1 Key Laboratory of Advanced Building Materials of Anhui Province, Hefei 230022, China;
2 School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China
下载:  全 文 ( PDF ) ( 10561KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 城镇化的快速推进带动了我国建筑行业的蓬勃发展,绿色建筑与可持续性发展成为人们关注的热点。一方面,基于生物碳酸钙具有的胶凝特性,利用微生物诱导碳酸钙沉积(MICP)技术可以胶结和加固砂土颗粒。与拌合法相比,喷洒法使固结砂土表现出更高的硬度和抗压强度;采用压力灌浆和循环灌浆的方式能进一步降低固结砂土的渗透系数和吸水率,提高其无侧限抗压强度和干密度。另一方面,基于菌液与胶结液粘度低、颗粒粒径小的特点,MICP技术可修复混凝土微裂纹、强化再生骨料,且修复后的混凝土和强化后的再生骨料表现出更为优异的物理力学性能。
MICP是微生物通过自身代谢活动产生的CO32-与周围环境中的Ca2+结合生成生物碳酸钙的过程。碳酸钙的形成受到菌种、温度、pH值和钙源等因素的影响,菌种是碳酸钙沉淀形成的关键;偏离适宜的温度和pH值时酶活性会减小,甚至有可能失活及变性;与CaCl2、Ca(NO3)2等钙源相比,Ca(CH3COO)2可以避免Ca2+团聚,从而表现出更高的矿化率。本文探讨了菌种的适用性及菌种、温度、pH值等因素对微生物沉积矿化机制的影响,并分别就MICP技术在地基砂土加固、混凝土裂纹修复、再生骨料强化等建筑领域的应用现状进行了综述,最后指出目前MICP技术在工程应用中存在的问题,并对MICP技术未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙道胜
许婉钰
刘开伟
欧阳金至
王爱国
关键词:  微生物诱导碳酸钙沉积  微生物水泥  砂土固结  微裂纹修复  再生骨料强化    
Abstract: The rapid advancement of urbanization has driven the vigorous development of China’s construction industry, and green buildings and sus?tainable development have become a hotspot. Based on the cementitious properties of biological calcium carbonate, sand particles can be cemented and reinforced by using microbially induced calcite precipitation (MICP). Compared with the direct mixing method, sand soil treated by spraying can show higher hardness, compressive strength and lower resistance to wind erosion. At the same time, the grouting under a low flow pressure or with circulation can effectively reduce the permeability coefficient and water absorption of the cured sand column, and improve its unconfined compressive strength and dry density. On the other hand, based on the characteristics of low viscosity and small particle size of bacteria liquid and cementing liquid, MICP technology can repair concrete microcracks and strengthen recycled aggregate, and the repaired concrete and reinforced recycled aggregate show better physical and mechanical properties.
MICP is a process that CO32- combines with Ca2+ in the surrounding environment to form calcium carbonate, and CO32- is produced by micro?bial metabolism. The formation of calcium carbonate is affected by bacteria, temperature, pH value and calcium source, etc. Bacteria is the key to the formation of calcium carbonate precipitation; Temperature and pH value will decrease enzyme activity when deviating from the optimum value, and even the enzyme may be inactivated and denatured; Comparing with CaCl2 and Ca(NO3)2, Ca(CH3COO)2 can avoid the agglomera?tion of Ca2+ and show higher mineralization rate in the process of MICP. In this paper, the applicability of bacteria and the influence of bacteria, temperature, pH value and other factors on the mechanism of MICP are discussed. Secondly, the application status of MICP technology in the construction field, such as reinforcing sand, repairing concrete microcracks and strengthening recycled aggregate are reviewed. Finally, the exis?ting problems in engineering application of MICP technology are pointed out, and the future research direction of MICP technology is also prospected.
Key words:  microbially induced calcite precipitation    biocement, sand reinforcing    microcrack repairing    recycled aggregate strengthening
                    发布日期:  2021-06-25
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52078002; 51778003); 安徽省高校自然科学基金(KJ2020A0476); 安徽省重点研究与开发计划项目(202004b11020033)
通讯作者:  *liukaiwei85@163.com   
作者简介:  孙道胜,安徽建筑大学硕士生导师,中国科学院合肥物质科学研究院博士生导师,1986年本科毕业于重庆大学,2004年研究生毕业于南京工业大学材料学专业,获工学博士。2005年获聘教授,安徽省硅酸盐学会常务理事,安徽省水泥标准化技术委员会常务理事,安徽省水泥协会常务理事。主要从事高性能混凝土、工业灰渣资源化利用、先进建筑材料等方面的研究工作。刘开伟,副教授,安徽建筑大学硕士生导师,主要研究领域为水泥基建筑材料/固体废弃物综合利用/建筑功能材料。2009年,毕业于南京工业大学材料化学专业,获学士学位;2014年毕业于南京工业大学,获博士学位;2018年赴美国夏威夷大学土木与环境工程系访学一年。主持和参与国家自然科学基金、安徽省高校自然科学研究重点研究项目、高性能土木工程材料国家重点实验室开放课题、材料化学工程国家重点实验室开放课题等多个省部级以上项目10余项。参与《海洋工程水泥与混凝土材料》的编写,获中国电建科学技术奖二等奖1项。
引用本文:    
孙道胜, 许婉钰, 刘开伟, 欧阳金至, 王爱国. MICP在建筑领域中的应用进展[J]. 材料导报, 2021, 35(11): 11083-11090.
SUN Daosheng, XU Wanyu, LIU Kaiwei, OUYANG Jinzhi, WANG Aiguo. Research Progress of the Application of MICP in Architecture. Materials Reports, 2021, 35(11): 11083-11090.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100019  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11083
1 Benhelal E, Zahedi G, Shamsaei E, et al. Journal of Cleaner Production,2013,51,142.
2 Zhou W, Jiang D, Chen D, et al. Energy,2016,106,464.
3 Diego M E, Arias B, Abanades J C. Journal of Cleaner Production,2016,117,110.
4 He F X, Wang Y L. Bulletin of The Chinese Ceramic Society,2018,37(11),3487(in Chinese).
何凤霞,王雨利.硅酸盐通报,2018,37(11),3487.
5 Wang B X, Hu J, Wang L, et al. China Building Materials Science & Technology,2018,27(3),42(in Chinese).
王冰霞,胡静,王璐,等.中国建材科技,2018,27(3),42.
6 Al?Salloum Y, Hadi S, Abbas H, et al. Construction and Building Materials,2017,154,857.
7 Castanier S, Le Métayer?Levrel G, Perthuisot J. Sedimentary Geology,1999,126(1),9.
8 Hammes F, Boon N, Villiers J D, et al. Applied & Environmental Microbiology,2003,69(8),4901.
9 Jia Q, Chen X H, Sun Z B, et al. Journal of Shandong Jianzhu Univer?sity,2015,30(5),423(in Chinese).
贾强,陈晓瀚,孙增斌,等.山东建筑大学学报,2015,30(5),423.
10 Qian C X, Rong H. Chinese Science Bulletin,2012,57(9),770(in Chinese).
钱春香,荣辉.科学通报,2012,57(9),770.
11 Chu F Z, Wu J Y, Ding J H, et al. Journal of Water Resources and Architectural Engineering,2019,17(2),94(in Chinese).
储方舟,吴静云,丁静鹄,等.水利与建筑工程学报,2019,17(2),94.
12 Huang L, Yang Y Q, Li J H. Geology and Resources,2009,18(4),317(in Chinese).
黄磊,杨永强,李金洪.地质与资源,2009,18(4),317.
13 Susanne D, Beveridge T J. FEMS Microbiology Ecology,1998,26,79.
14 Umar M, Kassim K A, Ping Chiet K T. Journal of Rock Mechanics and Geotechnical Engineering,2016,8(5),767.
15 Ji B, Chen W, Fan J, et al. Journal of Nanjing University (Nature Sciences),2017,53(1),191(in Chinese).
季斌,陈威,樊杰,等.南京大学学报:自然科学版,2017,53(1),191.
16 De Muynck W, De Belie N, Verstraete W. Ecological Engineering,2010,36(2),118.
17 Li W, Liu L P, Cao L, et al. Advances in Earth Science,2009,(6),597(in Chinese).
李为,刘丽萍,曹龙,等.地球科学进展,2009,(6),597.
18 Boquet E, Boronat A, Ramos?Cormenzana A. Nature,1973,246(5434),527.
19 Seifan M, Samani A K, Berenjian A. Applied Microbiology & Biotechno?logy,2016,100(6),2591.
20 Jonkers H M, Thijssen A, Muyzer G, et al. Ecological Engineering,2010,36(2),230.
21 Zhang X T. Study on the modification of recycled aggregate by microbially mineral precipitation. Master's Thesis, Qingdao University of Technology, China,2016(in Chinese).
张晓彤.微生物矿化沉积改性再生骨料及其机理研究.硕士学位论文,青岛理工大学,2016.
22 Zhu T, Paulo C, Merroun M L, et al. Ecological Engineering,2015,82,459.
23 Riding R. Geobiology,2006,4(4),299.
24 Deng S, Dong H, Lv G, et al. Chemical Geology,2010,278(3),151.
25 Dhami N K, Reddy M S, Mukherjee A. Frontiers in Microbiology,2014,5(304),1.
26 Achal V, Mukherjee A, Reddy M S. Journal of Materials in Civil Engineering,2010,23(6),730.
27 Rong H, Qian C X, Zhang L, et al. Journal of The Chinese Ceramic So?ciety,2015,43(8),1067(in Chinese).
荣辉,钱春香,张磊,等.硅酸盐学报,2015,43(8),1067.
28 DeJong J T, Mortensen B M, Martinez B C, et al. Ecological Enginee?ring,2010,36(2),197.
29 Naveed M, Duan J, Uddin S, et al. Ecological Engineering,2020,153,105885.
30 Paassen L A V, Ghose R, Linden T J M V, et al. Journal of Geotechnical & Geoenvironmental Engineering,2010,136(12),1721.
31 Cappitelli F, Toniolo L, Sansonetti A, et al. Applied & Environmental Microbiology,2007,73(17),5671.
32 Bang S S, Ramakrishnan V. International Journal of Smart & Nano Materials,2010,1(1),28.
33 Abo?El?Enein S A, Ali A H, Talkhan F N, et al. HBRC Journal,2013,9(1),36.
34 Ferris F G, Phoenix V, Fujita Y, et al. Geochimica Et Cosmochimica Acta,2004,68(8),1701.
35 Wang J Y, Snoeck D, Van Vlierberghe S, et al. Construction and Buil?ding Materials,2014,68,110.
36 Andalib R, Abd Majid M Z, Hussin M W, et al. Construction and Buil?ding Materials,2016,118,180.
37 Stepkowska E T, Pérez?Rodríguez J L, Sayagués M J, et al. Journal of Thermal Analysis and Calorimetry,2003,73(1),247.
38 Wei S, Cui H, Jiang Z, et al. Brazilian Journal of Microbiology,2015,46(2),455.
39 Rodriguez?Navarro C, Jroundi F, Schiro M, et al. Applied and Environmental Microbiology,2012,78(11),4017.
40 Dhami N K, Reddy M S, Mukherjee A. Journal of Microbiology and Biotechnology,2013,23(5),707.
41 Nain N, Surabhi R, Yathish N V, et al. Construction and Building Materials,2019,202,904.
42 Singh L P, Bisht V, Aswathy M S, et al. Construction and Building Materials,2018,181,217.
43 Hammes F, Verstraete W. Reviews in Environmental Science & Biotechno?logy,2002,1(1),3.
44 Mitchell A C, Ferris F G. Geochimica Et Cosmochimica Acta,2005,69(17),4199.
45 Peng J, Feng Q P, Sun Y C. Chinese Journal of Geotechnical Enginee?ring,2018,40(6),1048(in Chinese).
彭劼,冯清鹏,孙益成.岩土工程学报,2018,40(6),1048.
46 Muynck W D, Verbeken K, De Belie N. Applied Microbiology & Biotechnology,2013,97(3),1335.
47 Zhang H N. Experimental study on microbial induced calcium carbonate precipitation technology for sand solidification. Master's thesis, China University of Geosciences, China,2019(in Chinese).
张浩男.微生物诱导碳酸钙沉淀技术的砂土固化实验研究.硕士学位论文,中国地质大学,2019.
48 Wu M, Hu X, Zhang Q, et al. Construction and Building Materials,2019,209,631.
49 Xu J, Du Y L, Bai H L. Journal of Functional Materials,2016,47(4),4001(in Chinese).
徐晶,杜雅莉,白慧莉.功能材料,2016,47(4),4001.
50 Sharma A, Ramkrishnan R. Perspectives in Science,2016,8,198.
51 Li C J, Wei T Y, Ji B, et al. Environmental Science & Technology,2018,41(3),30(in Chinese).
李成杰,魏桃员,季斌,等.环境科学与技术,2018,41(3),30.
52 Kong F H, Zhao Z F. Journal of Forestry Engineering,2017,2(4),146(in Chinese).
孔繁浩,赵志峰.林业工程学报,2017,2(4),146.
53 Castrol M J, Lopez C E, Narayanasamy R, et al. Chimica oggi: international journal of chemistry and biotechnology,2016,24(4),36.
54 Okwadha G D O, Li J. Chemosphere,2010,81(9),1143.
55 Hao X H. Experimental studies on performances of expanded perlite insulation board strengthened by microbial mineralization and mechanism analysis. Master's Thesis, Taiyuan University of Technology, China,2019(in Chinese).
郝小虎.微生物矿化增强膨胀珍珠岩保温板性能试验研究及机理分析.硕士学位论文,太原理工大学,2019.
56 Ghosh S, Biswas M, Chattopadhyay B D, et al. Cement and Concrete Composites,2009,31,93.
57 Chahal N, Siddique R, Rajor A. Construction and Building Materials,2012,37,645.
58 Sahoo K K, Arakha M, Sarkar P, et al. International Journal of Smart and Nano Materials,2016,7(1),2.
59 Vaezi M, Zareei S A, Jahadi M. Construction and Building Materials,2020,234,117349.
60 Li C J. Bioremediation of Cd2+/Pb2+ and calcium carbonate precipitation induced by urease producing bacteria. Master's Thesis, Wuhan University of Science and Technology, China,2018(in Chinese).
李成杰.产脲酶菌诱导碳酸钙沉积及对重金属Cd2+/Pb2+的去除研究.硕士学位论文,武汉科技大学,2018.
61 Zhao Q. Experimental study on soil improvement using microbial induced calcite precipitation (MICP). Ph.D. Thesis, China University of Geo?sciences, China,2014(in Chinese).
赵茜.微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究.博士学位论文,中国地质大学,2014.
62 Jiang Y D. Research on new dust?depressor of calcite precipitation induced by microbe and enzyme. Master's Thesis, Southeast University, China,2018(in Chinese).
蒋耀东.微生物及活性酶诱导碳酸钙沉淀新型抑尘剂实验研究.硕士学位论文,东南大学,2018.
63 Wang K. Effects of physico?chemical parameters on characteristics of microbial induced calcium carbonate. Master's Thesis, Southeast University, China,2018(in Chinese).
王凯.理化环境参数对微生物诱导碳酸钙特性的影响.硕士学位论文,东南大学,2018.
64 Rong H, Qian C X, Li L Z. Journal of The Chinese Ceramic Society,2013,41(3),314(in Chinese).
荣辉,钱春香,李龙志.硅酸盐学报,2013,41(3),314.
65 Chu J, Ivanov V, Stabnikov V, et al. Advanced Materials Research,2012,347?353,4051.
66 Wong L S. Journal of Cleaner Production,2015,93,5.
67 Portugal C R M E, Fonyo C,Machado C C, et al. Journal of Cleaner Production,2020,262,121372.
68 Whiffin V S. Microbial CaCO3 precipitation for the production of biocement. Ph.D. Thesis, Murdoch University, Australia,2004.
69 Achal V, Mukherjee A. Construction and Building Materials,2015,93,1224.
70 Pacheco?Torgal F, Labrincha J A. Construction and Building Materials,2013,40,1136.
71 Park S J, Park Y M, Chun W Y, et al. Journal of Microbiology and Biotechnology,2010,20(4),782.
72 Gao J Z, Huang W, Liang Y H, et al. Chinese Journal of Underground Space and Engineering,2018,14,329(in Chinese).
高建中,黄玮,梁永辉,等.地下空间与工程学报,2018,14,329.
73 Anagnostopoulos C A. Applied Clay Science,2015,114,517.
74 Yu J R, Chen Y H, Chen G, et al. Engineering Geology,2020,264,105316.
75 Naeimi M, Haddad A. In: Proceedings of Geo Shanghai 2018 International Conference: Geoenvironment and Geohazard. Shanghai,2018,pp.483.
76 Iskl B, Demir T A, ürer S M, et al. Environmental Research,2003,91(2),113.
77 Cheng L, Cord?Ruwisch R. Geomicrobiology Journal,2014,31(5),396.
78 Gomez M G, Dejong J T, Anderson C M, et al. In: Geotechnical and Structural Engineering Congress 2016. Arizona,2016,pp.942.
79 Shahrokhi?Shahraki R, Zomorodian S M A, Niazi A, et al. Proceedings of the Institution of Civil Engineers Ground Improvement,2015,168,1.
80 Choi S G, Chu J, Brown R C, et al. Acs Sustainable Chemistry & Engineering,2017,5(8),7449.
81 Zhang Y, Guo H X, Cheng X H. Construction and Building Materials,2015,77,160.
82 Rong H, Qian C X, Li L Z. Journal of The Chinese Ceramic Society,2012,40,1564(in Chinese).
荣辉,钱春香,李龙志.硅酸盐学报,2012,40,1564.
83 Choi S G, Wang K, Chu J. Construction and Building Materials,2016,120,623.
84 Li M D, Li L, Ogbonnaya U, et al. Journal of Materials in Civil Engineering,2016,28(4),04015166.
85 Liu B, Zhu C, Tang C S, et al. Engineering Geology,2020,264,105389.
86 Lee M L, Ng W S, Tanaka Y. Ecological Engineering,2013,60,142.
87 Zhan Q W. Cementation of sandy soil by shallow mineralization of microbe capturing carbon dioxide and application in fugitive dust. Ph.D. Thesis, Southeast University, China,2018(in Chinese).
詹其伟.微生物捕碳浅层矿化胶结沙土及其抑尘应用.博士学位论文,东南大学,2018.
88 Liang S H, Dai J, Li X, et al. Industrial Construction,2017,47(2),82(in Chinese).
梁仕华,戴君,李翔,等.工业建筑,2017,47(2),82.
89 Liang S H, Niu J G, Dai J, et al. Industrial Construction,2018,48(7),22(in Chinese).
梁仕华,牛九格,戴君,等.工业建筑,2018,48(7),22.
90 Ren L F, Qian C X. Journal of The Chinese Ceramic Society,2014,42(11),1389(in Chinese).
任立夫,钱春香.硅酸盐学报,2014,42(11),1389.
91 Choi S G, Wang K, Wen Z, et al. Cement and Concrete Composites,2017,83,209.
92 Chen R F, Miao L C, Sun X H, et al. Bulletin of The Chinese Ceramic Society,2019,38(10),3054(in Chinese).
陈润发,缪林昌,孙潇昊,等.硅酸盐通报,2019,38(10),3054.
93 Achal V, Mukerjee A, Reddy M S. Construction and Building Materials,2013,48,1.
94 Sierra?Beltran M G, Jonkers H M, Schlangen E. Construction and Buil?ding Materials,2014,67,344.
95 Wang J, Tittelboom K V, Belie N D, et al. Construction and Building Materials,2012,26(1),532.
96 Luo M, Qian C X, Li R Y. Construction and Building Materials,2015,87,1.
97 White S R, Sottos N R, Geubelle P H, et al. Nature,2001,409(6822),794.
98 Wang J Y, Soens H, Verstraete W, et al. Cement and Concrete Research,2014,56(2),139.
99 Khaliq W, Ehsan M B. Construction and Building Materials,2016,102,349.
100 Tziviloglou E, Wiktor V, Jonkers H M, et al. Construction and Building Materials,2016,122,118.
101 Zhang J, Liu Y, Feng T, et al. Construction and Building Materials,2017,148,610.
102 Wiktor V, Jonkers H M. Cement and Concrete Composites,2011,33,763.
103 Sidiq A, Setunge S, Gravina R J, et al. Construction and Building Materials,2020,232,117239.
104 Wang X, Huang Y, Huang Y, et al. Construction and Building Mate?rials,2019,220,90.
105 Wang X F, Zhang J H, Zhao W, et al. Construction and Building Materials,2018,165,149.
106 Grabiec A M, Klama J, Zawal D, et al. Construction and Building Materials,2012,34,145.
107 Qiu J, Tng D Q S, Yang E H. Construction and Building Materials,2014,57,144.
108 Wu C R, Zhu Y G, Zhang X T, et al. Cement and Concrete Composites,2018,94,248.
109 Zhu Y G, Li Q Q, Xu P Z, et al. Materials,2019,12(13),2147.
110 Wang Y L. Science & Technology Vision,2019,13,161(in Chinese).
王瑜玲.科技视界,2019,13,161.
111 Zeng W, Zhao Y, Poon C S, et al. Construction and Building Materials,2019,228,116741.
112 Zhang J X, Chen P, Xu H, et al. Journal of Zhejiang Sci?Tech Univer?sity,2020,43(1),122(in Chinese).
张京旭,陈萍,徐辉,等.浙江理工大学学报,2020,43(1),122.
113 Hao X H, Zhang J G, Li Z, et al. Concrete,2018,348(10),75(in Chinese).
郝小虎,张家广,李珠,等.混凝土,2018,348(10),75.
114 Zhu Y G, Wu Y K, Wu C R. China Concrete and Cement Products,2017,(12),93(in Chinese).
朱亚光,吴延凯,吴春然.混凝土与水泥制品,2017,(12),93.
115 Wu C, Hong Z, Zhang J, et al. Cement and Concrete Composites,2020,111,103631.
116 Zhu Y G, Wu C R, Wu Y K, et al. Concrete,2018,345(7),88(in Chinese).
朱亚光,吴春然,吴延凯,等.混凝土,2018,345(7),88.
117 Chen F, Wu C R, Wang R X. Theoretical Research in Urban Construction,2018,263(17),91(in Chinese).
陈飞,吴春然,王祥瑞.城市建设理论研究,2018,263(17),91.
118 Fu M H. Investigation on modifications and applications of recycled fine aggregate prepared from demolition concrete. Master's Thesis, Southeast University, China,2016(in Chinese).
付明华.拆除混凝土再生细骨料的改性与应用研究.硕士学位论文,东南大学,2016.
119 Feng Z, Zhao Y, Zeng W, et al. Construction and Building Materials,2020,230,116949.
120 Khadim H J, Ammar S H, Ebrahim S E. Environmental Technology & Innovation,2019,14,100315.
121 Qian X, Fang C, Huang M, et al. Journal of Cleaner Production,2017,164,198.
122 Zhan Q, Qian C, Yi H. Construction and Building Materials,2016,121,437.
123 Xiao J, Huang J, Jiang Y D, et al. Sustainability in Environment,2017,2(4),379.
124 Paul V G, Wronkiewicz D J, Mormile M R. Applied Geochemistry,2017,78,250.
125 Okyay T O, Nguyen H N, Castro S L, et al. Science of The Total Environment,2016,572,671.1 Benhelal E, Zahedi G, Shamsaei E, et al. Journal of Cleaner Production,2013,51,142.
[1] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[2] 邓宗才, 连怡红, 赵连志. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
[3] 赵立晓, 王鹏刚, 王兰芹, 赵铁军, 光文涛. 混凝土内部温湿度响应参数分析:水分扩散系数与导热系数[J]. 材料导报, 2021, 35(12): 12075-12080.
[4] 刘娟红, 马虹波, 段品佳, 周昱程, 郭子栋. 硫酸盐干湿循环环境下超深井井壁混凝土抗腐蚀性能[J]. 材料导报, 2021, 35(12): 12081-12086.
[5] 汪海波, 徐成, 王梦想, 徐颖. 碳化龄期对水泥砂浆动态力学特性影响试验研究[J]. 材料导报, 2021, 35(12): 12087-12091.
[6] 王哲伟, 周华飞, 谢子令. 定向钢纤维增强地质聚合物弯曲破坏的声发射特性[J]. 材料导报, 2021, 35(12): 12214-12219.
[7] 孙道胜, 李泽英, 刘开伟, 王爱国, 黄伟, 张高展. 再生粗骨料的形态及缺陷对再生混凝土干燥收缩和力学性能的影响[J]. 材料导报, 2021, 35(11): 11027-11033.
[8] 魏致强, 王远贵, 齐孟, 郑旭煦, 袁小亚. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10): 10042-10047.
[9] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[10] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[11] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[12] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[13] 张济涛, 耿健, 李东, 朱浩泽. 蒸养条件下硅酸三钙(C3S)水化热动力学特性研究[J]. 材料导报, 2021, 35(8): 8064-8069.
[14] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[15] 石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[3] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[4] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[5] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[6] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[7] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[8] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[9] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[10] Yan MA,Zhi LI,Ruilong RAN,Kang LI. Research on Application of Silk in Biomaterial Field[J]. Materials Reports, 2018, 32(1): 86 -92 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed