Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8056-8063    https://doi.org/10.11896/cldb.20020062
  无机非金属及其复合材料 |
受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能
牛建刚1, 许文明1, 梁剑2
1 内蒙古科技大学土木工程学院,包头 014000
2 广西大学土木工程学院,南宁 530000
Flexural Behavior of Plastic Steel Fiber Reinforced Lightweight Aggregate Concrete Beams Confined Locally in Compression Zone
NIU Jiangang1, XU Wenming1, LIANG Jian2
1 School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014000, China
2 School of Civil Engineering, Guangxi University, Nanning 530000, China
下载:  全 文 ( PDF ) ( 7146KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高塑钢纤维轻骨料混凝土梁的受弯性能,采用矩形箍约束局部受压区的方式,设计了六根受压区增强塑钢纤维轻骨料混凝土梁,分析了纵筋配筋率和混凝土强度对塑钢纤维轻骨料混凝土梁受弯力学性能的影响,并对其进行有限元分析。结果表明:采用箍筋约束受压区混凝土后,局部受压区极限压应变增大,试件的承载力和延性有显著提高;随着配筋率增加,试件的承载力有明显提高,且高配筋率梁的超筋破坏现象得到明显改善;随着约束区混凝土强度的增大,梁的承载力变大,而延性降低。有限元分析结果表明,在受压区局部配置箍筋约束后,受压区混凝土极限压应力变大,极大地改善了梁跨中受压区的应力集中现象,从而抑制了梁受压区边缘混凝土的压碎破坏,提高了梁的承载力和延性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛建刚
许文明
梁剑
关键词:  塑钢纤维  轻骨料混凝土  承载力  延性    
Abstract: In order to improve the flexural performance of the beam, six reinforced plastic steel fiber reinforced lightweight aggregate concrete beams were designed by using rectangular hoops to restrain the local compression area. The influence of the longitudinal reinforcement ratio and the concrete strength on the flexural mechanical properties of the beam was analyzed and the finite element analysis was carried out. The results show that when stirrups are used to restrain the concrete in the compression zone, the ultimate compressive strain in the local compression zone increases, and the bearing capacity and ductility of the specimen increase significantly; with the increase of reinforcement ratio, the bearing capacity of the specimen increases significantly, and the over reinforcement failure of the beam with high reinforcement ratio is improved obviously; with the increase of concrete strength in the restraint zone, the bearing capacity of the beam increases, while the ductility decreases. The results of finite element analysis show that the ultimate compressive stress of the concrete in the compression area becomes larger after the stirrup is placed locally in the compression area, which greatly improves the stress concentration in the compression area in the middle of the beam span, thus inhibiting the crushing failure of the concrete at the edge of the compression area of the beam, and improving the bearing capacity and ductility of the beam.
Key words:  plastic steel fiber    lightweight aggregate concrete    bearing capacity    ductility
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TU528.2  
基金资助: 国家自然科学基金(51368042);内蒙古自治区青年科技英才支持计划(NJYT-18-A06)
通讯作者:  xuwenming163@163.com   
作者简介:  牛建刚,于2008年12月在西安建筑科技大学土木工程学院获得结构工程博士学位,2009年1月至今,在内蒙古科技大学土木工程学院从事教学与科研工作,主要研究方向为纤维轻骨料混凝土、混凝土结构耐久性、建筑结构可持续发展。回校工作后获得国家杰出青年基金、国家自然科学基金4项和内蒙古自然科学基金2项。
许文明,于2017年6月毕业于青岛理工大学,获得工学学士学位。2018年9月至今,内蒙古科技大学攻读硕士研究生,主要从事纤维轻骨料混凝土、混凝土结构耐久性、建筑结构可持续发展的研究。
引用本文:    
牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
NIU Jiangang, XU Wenming, LIANG Jian. Flexural Behavior of Plastic Steel Fiber Reinforced Lightweight Aggregate Concrete Beams Confined Locally in Compression Zone. Materials Reports, 2021, 35(8): 8056-8063.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020062  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8056
1 Xiong X Y, Xu H F, Li Y M. China Civil Engineering Journal,2010,43(6),26(in Chinese).
熊学玉,徐海峰,李亚明.土木工程学报,2010,43(6),26.
2 Ma Z J, Qiao L T, Wang W, et al. Journal of Harbin Institute of Techno-logy,2011,43(8),21(in Chinese).
马忠吉,乔雷涛,王伟,等.哈尔滨工业大学学报,2011,43(8),21.
3 Guo Z X, Lin H, Liu Y. Journal of Building Structures,2010,31(4),110(in Chinese).
郭子雄,林煌,刘阳.建筑结构学报,2010,31(4),110.
4 Zhu Y. Improving effect of confinement steel on seismic behavior of reinforced concrete frames. Master's Thesis, Yangzhou University, China,2011(in Chinese).
朱烨.约束钢筋对钢筋混凝土框架结构抗震性能的改善效应.硕士学位论文,扬州大学,2011.
5 Li X G. Improvement and discussion of rectangular hoop confined concrete model. Master's Thesis, Chongqing University, China,2011(in Chinese).
李小光.矩形箍筋约束混凝土模型的改进探讨.硕士学位论文,重庆大学,2011.
6 Wu T, Wei H, Liu X, et al. Engineering Mechanics,2018,35(2),203(in Chinese).
吴涛,魏慧,刘喜,等.工程力学,2018,35(2),203.
7 Daniel C, Patrick P. ASCE Journal of Structural Engineering,1994,120(3),783.
8 Hu H T, Ye Z M. Building Structure,2002,32(4),12(in Chinese).
胡海涛,叶知满.建筑结构,2002,32(4),12.
9 Xi X Y, Cao X M, Guo X Z. Journal of Guizhou University of Technology(Natural Science Edition),2003,12(1),90(in Chinese).
席晓云,曹新明,郭献忠.贵州工业大学学报(自然科学版),2003,12(1),90.
10 Zhou J Y, Cao X M. Journal of Guizhou University (Natural Sciences),2016,33(6),93(in Chinese).
周建英,曹新明.贵州大学学报(自然科学版),2016,33(6),93.
11 Base G D, Read J B. ACI Structural Journal,1965,62(7),763.
12 Liu T C Y, Nilson A H, Slate F H. ACI Journal Proceedings,1972,69(5),29l.
13 Guan P, Wang Q X, Zhao G F. Industrial Construction,1997,4(11),27(in Chinese).
关萍,王清湘,赵国藩.工业建筑,1997,4(11),27.
14 Cao X M, Xi X Y. Journal of Guizhou University of Technology (Natural Science Edition),2002(5),68(in Chinese).
曹新明,席晓云.贵州工业大学学报(自然科学版),2002(5),68.
15 GB50010—2010. Code for design of concrete structures, China Architecture & Building Press 2010,2015(in Chinese).
GB50010—2010.混凝土结构设计规范,中国建筑工业出版社,2015.
16 Balendran R V, Zhou F P, Nadeem A, et al. Building and Environment,2002,37(13),61.
17 Domagala L. Journal of Civil Engineering and Management,2011,17(1),36.
18 Mehta P K, Monteiro P J M. In: Concrete: Microstructure, Properties, and Materials, USA,2013,pp.98.
19 Li W. Mechanical properties of steel polypropylene hybrid fiber reinforced lightweight aggregate concrete. Master's Thesis, Wuhan Institute of Technology, China,2016(in Chinese).
李维.钢—聚丙烯混杂纤维轻骨料混凝土力学性能研究.硕士学位论文,武汉工程大学,2016.
20 Yao P F. Experimental study on compressive properties flexural perfor-mance of steel polypropylene hybrid fiber reinforced lightweight aggregate concrete. Wuhan Institute of Technology, China,2017(in Chinese).
姚鹏飞.钢—聚丙烯混杂纤维轻骨料混凝土抗压与抗折性能试验研究.硕士学位论文,武汉工程大学,2016.
21 Liu S B, Yao P F, Jin Z X, et al. Low Temperature Architecture Technology,2018,40(1),18(in Chinese).
刘胜兵,姚鹏飞,靳哲鑫,等.低温建筑技术,2018,40(1),18.
22 Niu J G, Liang J, Jiao M Y. Journal of Civil and Environmental Enginee-ring,2019,41(5),92(in Chinese).
牛建刚,梁剑,焦孟友.土木与环境工程学报,2019,41(5),92.
23 JGJ51—2002. Technical specification for lightweight aggregate concrete, China Architecture & Building Press,2002(in Chinese).
JGJ51—2002.轻骨料混凝土技术规程,中国建筑工业出版社,2002.
24 JGJ55—2011. Specification for mix proportion design of ordinary concrete, China Architecture & Building Press,2011(in Chinese).
JGJ55—2011.普通混凝土配合比设计规程,中国建筑工业出版社,2011.
25 Niu J G, Li M C, Liu H Z. Bulletin of the Chinese Ceramic Society,2018,37(3),760(in Chinese).
牛建刚,李明闯,刘洪振.硅酸盐通报,2018,37(3),760.
26 Hognested E, Honson N W, McHeny D. ACI Journal Processing,1955,22,455.
[1] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[2] 杜文平, 杨才千, 王冲. 加固层厚度对PVA-RFCC加固梁弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4067-4073.
[3] 卢京宇, 王林, 雍涵, 王佩勋, 李超. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 618-622.
[4] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[5] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[6] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[7] 袁帅, 易锦, 贺国京. 加筋木-混凝土组合梁承载力计算及尺寸设计方法[J]. 材料导报, 2019, 33(20): 3419-3425.
[8] 辛景舟, 周建庭, 周应新, 苏欣, 冉文兴. 考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究[J]. 材料导报, 2019, 33(14): 2362-2369.
[9] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[10] 王义超, 侯梦君, 余江滔, 徐世烺, 俞可权, 张志刚. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540.
[11] 宋庆功, 许科, 顾威风, 甄丹丹, 郭艳蕊, 胡雪兰. Zr和Mo双掺杂γ-TiAl基合金的稳定性与延性预测[J]. 材料导报, 2018, 32(18): 3154-3160.
[12] 牛建刚, 刘江森, 王佳雷. 聚丙烯粗纤维轻骨料混凝土梁的二次峰值荷载曲线[J]. 《材料导报》期刊社, 2018, 32(14): 2407-2411.
[13] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[14] 蒋友宝, 吴林华, 陈治茂. 配有RPC预制管混凝土组合柱的RC框架抗震性能分析*[J]. CLDB, 2017, 31(23): 90-95.
[15] 张虎. 自密实钢纤维轻骨料混凝土的早期性能与损伤分析*[J]. 《材料导报》期刊社, 2017, 31(20): 124-128.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed