Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 90-95    https://doi.org/10.11896/j.issn.1005-023X.2017.023.012
  专题栏目:超高性能混凝土及其工程应用 |
配有RPC预制管混凝土组合柱的RC框架抗震性能分析*
蒋友宝, 吴林华, 陈治茂
长沙理工大学土木工程学院,长沙 410114
Seismic Performance Analysis for RC Frames with Concrete-filled Precast RPC Tubular Columns
JIANG Youbao, WU Linhua, CHEN Zhimao
School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114
下载:  全 文 ( PDF ) ( 2122KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在活性粉末混凝土(Reactive powder concrete, RPC)预制管内浇注混凝土,并在RPC预制管和内部混凝土中均配置纵向钢筋,形成一种新型组合柱——RPC预制管混凝土组合柱。采用平截面假定,并结合已有的RPC、混凝土和钢筋材料本构模型,推导了该新型柱大偏压受力状态的承载力计算式。分别采用该承载力计算式和Opensees纤维模型对两种截面的新型柱承载力进行了对比分析,两种方法的计算结果较为接近。基于柱梁承载力比、RPC预制管中钢筋等级等参数,采用Opensees纤维模型分析了配有该新型柱的RC框架的抗震性能。结果表明:当RPC预制管中配置的钢筋等级提高至HRB400及以上时,结构耗能能力和延性系数均有较大程度的提高;当柱梁承载力比不超过1.2时,随柱梁承载力比的增加,结构抗震性能改善效果不明显,而当柱梁承载力比为1.5及以上时,结构抗震性能随柱梁承载力比的增加会有明显的提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋友宝
吴林华
陈治茂
关键词:  RPC预制管混凝土组合柱  RC框架  承载力  滞回分析  Opensees  抗震性能    
Abstract: An innovative column, named concrete-filled precast RPC tubular column, was presented in this paper. In this composite column, concrete was casted into precast RPC tube and steel bar were arranged in both concrete filled inside and precast RPC tube. Using the assumption of plane section, the formulas on bearing capacity was obtained for this column with large eccentricity compression based on the prescribed constitutive laws of RPC, concrete and steel. Bearing capacity analysis was performed for the columns with 2 different sections by the obtained formulas and the Opensees fiber model, respectively. The capacity results obtained by these two methods were closed to each other. Considering variations of parameters: the ratio of column bearing capacity to beam bearing capacity and steel grade arranged in precast RPC tube, seismic performance of RC frames with the columns was also analyzed by the Opensees fiber model. It showed that: the energy dissipation and ductility can be improved dramatically with the steel grade equal to or higher than HRB400 arranged in precast RPC tube; with the increase of the ratio of column bea-ring capacity to beam bearing capacity, the seismic performance can be improved minorly when the ratio not larger than 1.2, but can be improved dramatically when the ratio equal to or larger than 1.5.
Key words:  concrete-filled precast RPC tubular columns    RC frames    bearing capacity    hysterisis analysis    Opensees    seismic performance
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU398.9  
基金资助: *国家自然科学基金(51678072); “湖湘青年英才”支持计划(2016RS3030)
作者简介:  蒋友宝:男,1982年生,博士,教授,博士研究生导师,从事复杂结构可靠度分析与设计研究 E-mail:jiangybseu@163.com
引用本文:    
蒋友宝, 吴林华, 陈治茂. 配有RPC预制管混凝土组合柱的RC框架抗震性能分析*[J]. CLDB, 2017, 31(23): 90-95.
JIANG Youbao, WU Linhua, CHEN Zhimao. Seismic Performance Analysis for RC Frames with Concrete-filled Precast RPC Tubular Columns. Materials Reports, 2017, 31(23): 90-95.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.012  或          https://www.mater-rep.com/CN/Y2017/V31/I23/90
1 Richard P, Cheyrezy M. Reactive powder concretes with high duc-tility and 200—800 MPa compressive strength[J]. ACI Special Publication, 1994, 114:507.
2 Richard P, Cheyrezy M. Composition of reactive powder concretes[J]. Cem Concr Res, 1995, 25(7):1501.
3 Maroliya M K. Micro-structure analysis of reactive powder concrete[J]. Int J Eng Res Develop, 2012, 4(2):68.
4 Zheng Wenzhong, Lv Xueyuan. Literature review of reactive powder concrete[J]. J Build Struct, 2015, 36(10):44(in Chinese).
郑文忠,吕雪源.活性粉末混凝土研究进展[J]. 建筑结构学报, 2015, 36(10):44.
5 Bu Liangtao, Tao Jianjian, Duan Wenfeng, et al. Experimental study on axial compression performance of reinforced concrete co-lumns[J]. Build Struct, 2014, 44(11):8(in Chinese).
卜良桃, 陶剑剑, 段文峰, 等. 活性粉末混凝土加固钢筋混凝土柱轴压性能试验研究[J]. 建筑结构,2014,44(11):8.
6 Tong Xiaolong, Fang Zhi. Study on semismic performance of super high-rise structure with reactive powder concrete[J]. Build Struct, 2016,46(3):6(in Chinese).
童小龙, 方志. 活性粉末混凝土超高层结构抗震性能研究[J]. 建筑结构, 2016, 46(3):6.
7 Wang Jun, Wang Zhibin, Li Lun. Mechanical behavior of reinforced concrete short columns with steel fiber RPC column-permanent templated to axial compression[J]. J Architecture Civil Eng, 2016, 33(2):98(in Chinese).
王钧, 王志彬, 李论. 配有钢纤维PRC免拆柱模的钢筋混凝土短柱轴压力学性能[J]. 建筑科学与工程学报, 2016, 33(2):98.
8 Ye Lieping, Qu Zhe, Ma Qianli, et al. Study on ensuring the strong column weak beam mechanism for RC frames based on the damage analysis in the Wenchuan earthquake[J].Build Struct,2008,38(11):52(in Chinese).
叶列平, 曲哲, 马千里, 等.从汶川地震框架结构震害谈“强柱弱梁”屈服机制的实现[J].建筑结构, 2008, 38(11):52.
9 Ye Lieping, Ma Qianli, Miao Zhiwei. Study on weak beam strong column design method of RC frame structures[J]. Eng Mech, 2010, 27(12):102(in Chinese).
叶列平, 马千里, 缪志伟.钢筋混凝土框架结构强柱弱梁设计方法的研究[J].工程力学, 2010, 27(12):102.
10 Jiang Youbao, Yang Weijun. Seismic adjustment coefficient of bea-ring capacity for RC frame columns with random characteristics of eccentricity[J]. J Central South University(Sci Technol), 2012, 43(7):2796(in Chinese).
蒋友宝, 杨伟军. 基于偏心距随机特性的RC框架柱承载力抗震调整系数[J].中南大学学报(自然科学版), 2012, 43(7):2796.
11 Jiang Youbao, Liao Gouyu, Xie Mingwu. Complex failure function and design reliability for RC frame columns and light-weight steel structures[J]. J Build Struct, 2014, 35(4):192(in Chinese).
蒋友宝, 廖国宇, 谢铭武. 钢筋混凝土框架柱和轻钢拱结构失效方程复杂特性与设计可靠度[J]. 建筑结构学报, 2014, 35(4):192.
12 Jiang Youbao, Yang Weijun. An approach based on theorem of total probability for reliability analysis of RC columns with random eccentricity[J]. Struct Safety, 2013, 41(1):37.
13 Gao Xiaowang, Wei Lian, Wei Chengji. Calibration of reliability level in the current Chinese seismic design code[J]. China Civil Eng J, 1987, 20(2):10(in Chinese).
高小旺, 魏琏, 韦承基.现行抗震规范可靠度水平的校准[J]. 土木工程学报, 1987,20(2):10.
14 GB50010-2010混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.
15 Tong Xiaolong. The study on seismic behavior and design method of reactive power concrete shear walls[D]. Changsha:Hunan University, 2016(in Chinese).
童小龙. 活性粉末混凝土剪力墙抗震性能及设计方法研究[D]. 长沙:湖南大学, 2016.
16 Li Hang. Experimental research on seismic behavior of frame with dismantled template of steel fiber reactive powder concrete[D]. Harbin:Northeast Forestry University, 2014(in Chinese).
李行. 配有钢纤维RPC免拆柱模的RC框架抗震性能试验研究[D]. 哈尔滨:东北林业大学,2014.
17 Ma Deyun. Sensitivity study of RC members’ reliability to random parameters[D]. Beijing:Beijing University of Technology, 2008(in Chinese).
马德云. 混凝土结构可靠性影响因素的敏感性研究[D]. 北京:北京工业大学, 2008.
18 Xu Haibin, Deng Zongcai. Experimental research on flexural behavior of prestressed ultra-high performance steel fiber concrete beams[J]. J Build Struct, 2014, 35(12):58(in Chinese).
徐海宾, 邓宗才. 预应力超高性能钢纤维混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2014, 35(12):58.
19 Ding Hongyan, Liang Yuguo, Guo Yaohua. Experimental research on seismic behavior of storey-adding frame strengthened with CFRP sheet[J]. Ind Constr, 2015, 45(10):176(in Chinese).
丁红岩, 梁玉国, 郭耀华. 碳纤维布增强植筋加层框架抗震性能试验研究[J]. 工业建筑, 2015, 45(10):176.
[1] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[2] 毕钰, 秦拥军, 阳毅恒, 陈奇, 杨亮. 金属波纹管浆锚连接预制钢筋混凝土剪力墙声发射性能研究[J]. 材料导报, 2024, 38(24): 23100230-9.
[3] 陈宗平, 李健成, 周济. 内置碳钢不锈钢管海洋混凝土柱轴压试验及承载力计算[J]. 材料导报, 2024, 38(12): 22100018-9.
[4] 王痛快, 赵琪, 雷婷, 杨文伟. GFRP管-石粉地聚物混凝土-钢管组合短柱轴压性能研究[J]. 材料导报, 2023, 37(23): 22050256-9.
[5] 陈宗平, 黎盛欣, 周济, 戴上秦. 海洋环境GFRP筋海水海砂混凝土梁受力性能试验及承载力计算[J]. 材料导报, 2023, 37(20): 22040207-10.
[6] 王向林, 毛江鸿, 宋志刚, 马佳星, 张军. 考虑时间效应的电化学修复后RC柱抗震性能试验研究[J]. 材料导报, 2023, 37(16): 21110218-6.
[7] 梁宁慧, 周侃, 兰菲, 刘新荣, 邓志云. 玄武岩-聚丙烯粗纤维混凝土管承载力试验研究[J]. 材料导报, 2023, 37(11): 21100164-8.
[8] 毛江鸿, 薛倩倩, 张军, 罗林, 马佳星. 电化学修复后钢筋低周疲劳性能退化的时间效应及其影响[J]. 材料导报, 2022, 36(12): 21050263-7.
[9] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[10] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[11] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[12] 卢京宇, 王林, 雍涵, 王佩勋, 李超. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 618-622.
[13] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[14] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[15] 袁帅, 易锦, 贺国京. 加筋木-混凝土组合梁承载力计算及尺寸设计方法[J]. 材料导报, 2019, 33(20): 3419-3425.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed