Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22100018-9    https://doi.org/10.11896/cldb.22100018
  金属与金属基复合材料 |
内置碳钢不锈钢管海洋混凝土柱轴压试验及承载力计算
陈宗平1,2,3,*, 李健成1, 周济1
1 广西大学土木建筑工程学院,南宁 530004
2 南宁学院土木与建筑工程学院,南宁530200
3 广西大学工程防灾与结构安全教育部重点实验室,南宁 530004
Axial Compressive Behavior and Bearing Capacity Calculation of Marine Concrete Filled Stainless Steel Tube Columns with Built-in Carbon Steel Under Axial Compression
CHEN Zongping1,2,3,*, LI Jiancheng1, ZHOU Ji1
1 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 College of Architecture and Civil Engineering, Nanning University, Nanning 530200, China
3 Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 36649KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究不锈钢管海洋混凝土柱及内配碳钢后的轴压力学性能,以型钢类型、螺旋筋间距、纵筋直径为变化参数,完成了 10 个试件的轴心受压静力加载试验。观察了试件的受力破坏全过程及形态,获取了轴向荷载-位移曲线及各钢材应变曲线,基于试验实测数据,就各变化参数对试件的轴压承载力、延性、耗能能力和损伤发展的影响规律进行了分析。结果表明:不同试件的破坏形态相似,均表现为不锈钢管局部屈曲压皱,混凝土斜向剪切破坏;内置碳钢可以提高试件的极限承载力、轴压延性和耗能能力,抑制试件的损伤发展;在增加相同用钢量的条件下,增加圆钢管含钢量对试件轴压性能提升幅度最大;基于“复合约束叠加法”推导计算公式所得承载力计算值与试验值吻合良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宗平
李健成
周济
关键词:  不锈钢管  海洋混凝土  内置碳钢  轴压试验  承载力计算    
Abstract: To investigate the axial compressive behavior of marine concrete filled stainless steel tube column and built-in carbon steel marine concrete filled stainless steel tube columns, a total of 10 specimens were tested under axial loads. The mechanical failure process and morphology of the specimens were observed, and the axial load-displacement curve and the strain curve of each steel were obtained. Based on the test data, the influence of various variation parameters on the ultimate bearing capacity, axial ductility, energy dissipation capacity and damage development of kinds of specimen was analyzed. The results show that the failure modes of specimens are local buckling and wrinkle of stainless steel tube and oblique shear failure of concrete. The built-in carbon steel can improve the ultimate bearing capacity, axial ductility and energy dissipation capacity of the specimen, and inhibit the damage development of the specimen. Under the condition of increasing the same weight of steel, with the increase of content of circular steel tube, the axial compression performance improved most; the calculated value of bearing capacity based on the calculation formula of ‘composite constraint superposition method' is in good agreement with the experimental value.
Key words:  stainless steel tubular    ocean concrete    built-in carbon steel    axial compression    bearing capacity calculation
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TU398.9  
通讯作者:  *陈宗平,广西大学教授、博士研究生导师,享受国务院政府特殊津贴,国家百千万人才工程人选、国家有突出贡献中青年专家、全国宝钢优秀教师奖获得者。主要从事结构工程、防灾减灾工程及防护工程方面的教学与研究工作。在海洋及近海混凝土结构、复合约束混凝土结构、异形柱结构、钢-混凝土组合及混合结构、再生混凝土结构、在役工程结构安全评估与加固、结构抗火防灾及高温损伤等方面主持多项国家自然科学基金; 研究成果获国家科技进步二等奖2项;在国内外高水平期刊上发表 SCI、EI检索论文近150篇。zpchen@gxu.edu.cn   
引用本文:    
陈宗平, 李健成, 周济. 内置碳钢不锈钢管海洋混凝土柱轴压试验及承载力计算[J]. 材料导报, 2024, 38(12): 22100018-9.
CHEN Zongping, LI Jiancheng, ZHOU Ji. Axial Compressive Behavior and Bearing Capacity Calculation of Marine Concrete Filled Stainless Steel Tube Columns with Built-in Carbon Steel Under Axial Compression. Materials Reports, 2024, 38(12): 22100018-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100018  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22100018
1 Hou B R, Zhang D, Wang P. Bulletin of Chinese Academy of Sciences, 2016, 31(12), 1326 (in Chinese).
侯保荣, 张盾, 王鹏. 中国科学院院刊, 2016, 31(12), 1326.
2 Li Z, Jin Z Q, Shao S S, et al. Materials Reports, 2018, 32(23), 4170 (in Chinese).
李哲, 金祖权, 邵爽爽, 等. 材料导报, 2018, 32(23), 4170.
3 Liao F Y, Tao Z. Industrial Construction, 2009, 39(4), 114 (in Chinese).
廖飞宇, 陶忠. 工业建筑, 2009, 39(4), 114.
4 Ding F X, Yin Y X, Mao J F, et al. Structures, 2019, 19, 277.
5 He A, Wang F, Zhao O. Thin-Walled Structures, 2019, 144, 106273.
6 Young B, Ellobody E. Journal of Constructional Steel Research, 2006, 62(5), 484.
7 Uy B, Tao Z, Han LH. Journal of Constructional Steel Research, 2011, 67(3), 360.
8 Zha X X, Li J, Liu Y X. Progress in Steel Building Structures, 2012, 14(3), 60 (in Chinese).
查晓雄, 李杰, 刘轶翔. 建筑钢结构进展, 2012, 14(3), 60.
9 Wang F, Zha X X. Journal of Building Structures, 2013, 34(S1), 288 (in Chinese).
王芳, 查晓雄. 建筑结构学报, 2013, 34(S1), 288.
10 Huang Y J, Wu J D, Xiao J Z, et al. Journal of Building Materials, 2018, 21(1), 85 (in Chinese).
黄一杰, 吴纪达, 肖建庄, 等. 建筑材料学报, 2018, 21(1), 85.
11 Chang X, Ru Z L, Zhou W, et al. Thin-Walled Structures, 2013, 63, 125.
12 Hassanein M F, Kharoob O F, Liang Q Q. Engineering Structures, 2013, 56, 83.
13 Qiao Q Y, Li J, Mou B, et al. Journal of Building Engineering, 2021, 44, 103431.
14 GB 50164-2011 Standard for quality control of concrete, China Architecture & Building Press, China, 2011(in Chinese).
GB 50164-2011 混凝土质量控制标准, 中国建筑工业出版社, 2011.
15 GB 50010-2010 Code for design of concrete structures, China Architecture & Building Press, China, 2015(in Chinese).
GB 50010-2010 混凝土结构设计规范, 中国建筑工业出版社, 2015.
16 GB/T228. 1-2010 Metallic materials-tensile testing-part 1:method of test at room temperature, Standards Press of China, China, 2010 (in Chinese).
GB/T228. 1-2010金属材料拉伸试验第 1 部分:室温试验方法, 中国标准出版社, 2010.
17 Chen Z P, Jing C G, Ning F. China Civil Engineering Journal, 2018, 51(1), 13 (in Chinese).
陈宗平, 经承贵, 宁璠. 土木工程学报, 2018, 51(1), 13.
18 Zhang G C, Guo C Q, Yan Z K, et al. Materials Reports, 2021, 35(24), 24158 (in Chinese).
张光成, 郭超群, 闫治坤, 等. 材料导报, 2021, 35(24), 24158.
19 Cai S W, Cai M. Damage and fracture of concrete, China Communications Press, China, 2003, pp.100 (in Chinese).
蔡四维, 蔡敏. 混凝土的损伤断裂, 人民交通出版社, 2003, pp.100.
20 GB 50936—2014 Technicalcode for concrete filled steel tubular structures.China Architecture Building Press, China, 2014 (in Chinese).
GB 50936—2014钢管混凝土结构技术规范,中国建筑工业出版社, 2014.
21 Mander J B, Priestley M J N, Park R. Journal of Structural Engineering, 1988, 114(8), 1804.
[1] 陈宗平, 黎盛欣, 周济, 戴上秦. 海洋环境GFRP筋海水海砂混凝土梁受力性能试验及承载力计算[J]. 材料导报, 2023, 37(20): 22040207-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed