Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22040207-10    https://doi.org/10.11896/cldb.22040207
  无机非金属及其复合材料 |
海洋环境GFRP筋海水海砂混凝土梁受力性能试验及承载力计算
陈宗平1,2,*, 黎盛欣1, 周济1, 戴上秦1
1 广西大学土木建筑工程学院,南宁 530004
2 广西大学工程防灾与结构安全教育部重点实验室,南宁 530004
Test on Mechanical Properties and Bearing Capacity Calculation of GFRP Bars Reinforced Seawater Sea-sand Concrete Beams Exposed to Marine Environment
CHEN Zongping1,2,*, LI Shengxin1, ZHOU Ji1, DAI Shangqin1
1 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 23290KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究海洋环境玻璃纤维增强聚合物筋(Glass fiber reinforced polymer bars,GFRP筋)海水海砂混凝土梁的受力性能,以暴露环境、暴露龄期和海砂取代率为变化参数,设计七个试件进行单调静力加载试验,观察了其受力破坏过程及形态,获取了试件的荷载-挠度曲线,分析了各变化参数对此类构件极限承载力、初始刚度和延性系数的影响规律。结果表明:与常规大气环境相比,经盐雾环境暴露后试件极限承载力增大了28.0%,而经潮汐环境暴露后极限承载力降低了13.0%;270 d龄期内,随着潮汐暴露龄期的延长,试件的极限承载力先增大后减小,而初始刚度和延性系数均呈减小趋势;海砂取代率的增大不利于试件的极限承载力和初始刚度。最后,探讨了海洋环境暴露后GFRP筋海水海砂混凝土梁受弯承载力的计算方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宗平
黎盛欣
周济
戴上秦
关键词:  海洋环境  GFRP筋  海水海砂混凝土梁  受力性能  承载力计算    
Abstract: To investigate the mechanical properties ofGlass Fiber Reinforced Polymer bars (GFRP bars) reinforced seawater sea-sand concrete beams exposed to marine environment, seven beams were designed for static loading tests using exposure environment, exposure duration, and sea-sand replacement ratio as various parameters. The failure process and failure mode of the specimens were observed, the load versus deflection curves were obtained. Then, the effects of various parameters on the ultimate bearing capacity, initial stiffness, and ductility coefficient of these beams were analyzed. The results show that, compared with the general atmospheric environment, the ultimate bearing capacity of specimen is improved by 28.0% after being exposed to salt-spray environment, while decreased by 13.0% after being exposed to tidal environment. During a 270 day exposure duration, with the increase of the exposure duration of tidal environment, the ultimate bearing capacity increases first and then decreases, while the initial stiffness and ductility coefficient of specimens both tend to decrease. The increase of sea sand replacement ratio is detrimental to specimens’ ultimate bearing capacity and initial stiffness. Finally, the calculation method of the flexural capacity of GFRP bars reinforced seawater sea-sand concrete beams exposed to marine environment is discussed.
Key words:  marine environment    GFRP bar    seawater sea-sand concrete beam    mechanical property    bearing capacity calculation
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51578163);八桂学者专项研究项目([2019]79号);广西科技基地与人才专项(桂科AD21075031);中央引导地方科技发展资金项目(桂科ZY21195010);广西重点研发计划项目(桂科AB21220012);广西研究生教育创新计划资助项目(YCBZ2021020)
通讯作者:  *陈宗平,广西大学教授、博士研究生导师。2004年于广西大学获工学硕士学位,2007年于西安建筑科技大学获工学博士学位。享受国务院政府特殊津贴,国家百千万人才工程人选、国家有突出贡献中青年专家、全国宝钢优秀教师奖获得者、广西壮族自治区第五批八桂学者、广西第九批优秀专家、广西高校卓越学者、广西大学土木工程建设世界一流学科和结构工程国家重点学科带头人。主要从事结构工程、防灾减灾工程及防护工程方面教学与研究工作。研究成果获国家科技进步二等奖2项;出版著作4部,主编教材2部;参编国家行业标准3部、主编地方标准1部;获授权国家发明专利12项、实用新型专利21项;在国内外高水平期刊上发表SCI、EI检索论文近200篇,9篇入选中国精品科技期刊顶尖学术论文领跑者F5000,2篇入选2012—2016年建筑结构学报高被引论文,1篇入选2013—2018年工程力学高被引论文,1篇入选2017年中国百篇最具影响力国内学术论文。zpchen@gxu.edu.cn   
引用本文:    
陈宗平, 黎盛欣, 周济, 戴上秦. 海洋环境GFRP筋海水海砂混凝土梁受力性能试验及承载力计算[J]. 材料导报, 2023, 37(20): 22040207-10.
CHEN Zongping, LI Shengxin, ZHOU Ji, DAI Shangqin. Test on Mechanical Properties and Bearing Capacity Calculation of GFRP Bars Reinforced Seawater Sea-sand Concrete Beams Exposed to Marine Environment. Materials Reports, 2023, 37(20): 22040207-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040207  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22040207
1 Li Z, Jin Z Q, Shao S S. Materials Reports, 2018, 32(23), 4170(in Chinese).
李哲, 金祖权, 邵爽爽. 材料导报, 2018, 32(23), 4170.
2 Wang Z K, Zhao X L, Xian G J, et al. Construction and Building Materials, 2017, 139, 467.
3 Xiao J Z, Qiang C B, Nanni A, et al. Construction and Building Materials, 2017, 155, 1101.
4 Hua Y T, Yin S P, Wang L C. Journal of Building Structures, 2021, 42(2), 166(in Chinese).
华云涛, 尹世平, 王璐晨. 建筑结构学报, 2021, 42(2), 166.
5 Zhao J W. Experimental study and theoretical analysis on flexural beha-vior of sea water and sea sand concrete beam reinforced with FRP bars. Master’s Thesis, Inner Mongolia University of Technology, China, 2015(in Chinese).
赵嘉玮. FRP筋海水海砂混凝土梁的受弯性能研究和理论分析. 硕士学位论文, 内蒙古工业大学, 2015.
6 Li L J, Zeng L, Li S W, et al. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2019, 172, 237.
7 Lian J L. Experimental research on durability of FRP reinforced sea sand concrete beams. Master’s Thesis, Southeast University, China, 2017(in Chinese).
连金龙. FRP筋增强海砂混凝土梁耐腐蚀性能试验研究. 硕士学位论文, 东南大学, 2017.
8 Li B N. Durability of flexural behaviors of FRP bars reinforced seawater and sea sand concrete beams under the coupled effects of seawater immersion and sustained load. Master’s Thesis, Dalian University of Technology, China, 2020(in Chinese).
李炳男. 海水浸泡与荷载耦合作用下FRP筋海水海砂混凝土梁抗弯耐久性能研究. 硕士学位论文, 大连理工大学, 2020.
9 混凝土用水标准: JGJ 63-2006, 中国建筑工业出版社, 2006.
10 建设用砂: GB/T 14684-2011, 中国标准出版社, 2011.
11 普通混凝土拌合物性能试验方法标准: GB/T 50080-2016, 中国建筑工业出版社, 2016.
12 混凝土结构耐久性设计标准: GB/T 50476-2019, 中国建筑工业出版社, 2019.
13 混凝土物理力学性能试验方法标准: GB/T 50081-2019, 中国建筑工业出版社, 2019.
14 纤维增强塑料性能试验方法总则: GB/T 1446-2005, 中国标准出版社, 2005.
15 Shi C J, Hu X, Wang X G, et al. Journal of Materials in Civil Engineering, 2017, 29(1), 04016183.
16 Zhang J, Sun M, Hou D, et al. Construction and Building Materials, 2017, 139, 365.
17 Liu J, An R, Jiang Z L, et al. Construction and Building Materials, 2022, 321, 126333.
18 Xuan G Y, Lu C H, Xu K, et al. Journal of Harbin Institute of Technology, 2020, 52(8), 161(in Chinese).
宣广宇, 陆春华, 徐可, 等. 哈尔滨工业大学学报, 2020, 52(8), 161.
19 Dai L. Study on tensile properties of GFRP bars embedded in concrete beams under sustained load and environmental effects. Ph. D. Thesis, Wuhan University of Technology, China, 2017(in Chinese).
代力. 持续荷载与环境作用下混凝土梁中GFRP筋抗拉性能研究. 博士学位论文, 武汉理工大学, 2017.
20 Wu G, Zhu Y, Dong Z Q, et al. China Civil Engineering Journal, 2014, 47(8), 32(in Chinese).
吴刚, 朱莹, 董志强, 等. 土木工程学报, 2014, 47(8), 32.
21 Fu K, Xue W C. Journal of Building Materials, 2014, 17(1), 35(in Chinese).
付凯, 薛伟辰. 建筑材料学报, 2014, 17(1), 35.
22 Davalos J F, Chen Y, Ray I. Journal of Composite Materials, 2012, 46(16), 1899.
23 Kwan W H, Ramli M. Construction and Building Materials, 2013, 48, 780.
24 Kim H Y, Park Y H, You Y J, et al. Composite Structures, 2008, 83(1), 37.
25 Wu G, Dong Z Q, Wang X, et al. Journal of Composites for Construction, 2015, 19(3), 04014058.
26 Zhang J R, Sun M, Hou D S, et al. Construction and Building Materials, 2017, 139, 365.
27 Guo Z H. Reinforced concrete theory, Tsinghua University Press, China, 2013, pp. 181(in Chinese).
过镇海. 钢筋混凝土原理, 清华大学出版社, 2013, pp. 181.
28 Shao H J, Li Z L, Xiao S P, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(9), 2948(in Chinese).
邵化建, 李宗利, 肖帅鹏, 等. 硅酸盐通报, 2021, 40(9), 2948.
29 Al-Salloum Y A, El-Gamal S, Almusallam T H, et al. Composites Part B, Engineering, 2013, 45(1), 835.
30 Zhang X Y, Ou J P. Journal of Wuhan University of Technology, 2007(1), 33(in Chinese).
张新越, 欧进萍. 武汉理工大学学报, 2007(1), 33.
31 Phani K K, Bose N R. Composites Science and Technology, 1987, 29(2), 79.
32 Gao R D, Zhao S B, Li Q B, et al. China Civil Engineering Journal, 2010, 43(2), 48(in Chinese).
高润东, 赵顺波, 李庆斌, 等. 土木工程学报, 2010, 43(2), 48.
33 纤维增强复合材料工程应用技术标准: GB 50608-2020, 中国计划出版社, 2020.
34 Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer(FRP) bars: ACI 440. 1R-15, American Concrete Institute, 2015.
35 Design and construction of building structures with fibre-reinforced polymers: CSA S806-12, Canadian Standards Association, 2012.
[1] 陈阳, 胡翔, 吴泽媚, 史才军. 海洋环境下FRP增强混凝土构件结构劣化和性能退化的研究综述[J]. 材料导报, 2023, 37(18): 21120052-11.
[2] 袁帅, 易锦, 贺国京. 加筋木-混凝土组合梁承载力计算及尺寸设计方法[J]. 材料导报, 2019, 33(20): 3419-3425.
[3] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed