Test on Mechanical Properties and Bearing Capacity Calculation of GFRP Bars Reinforced Seawater Sea-sand Concrete Beams Exposed to Marine Environment
CHEN Zongping1,2,*, LI Shengxin1, ZHOU Ji1, DAI Shangqin1
1 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China 2 Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
Abstract: To investigate the mechanical properties ofGlass Fiber Reinforced Polymer bars (GFRP bars) reinforced seawater sea-sand concrete beams exposed to marine environment, seven beams were designed for static loading tests using exposure environment, exposure duration, and sea-sand replacement ratio as various parameters. The failure process and failure mode of the specimens were observed, the load versus deflection curves were obtained. Then, the effects of various parameters on the ultimate bearing capacity, initial stiffness, and ductility coefficient of these beams were analyzed. The results show that, compared with the general atmospheric environment, the ultimate bearing capacity of specimen is improved by 28.0% after being exposed to salt-spray environment, while decreased by 13.0% after being exposed to tidal environment. During a 270 day exposure duration, with the increase of the exposure duration of tidal environment, the ultimate bearing capacity increases first and then decreases, while the initial stiffness and ductility coefficient of specimens both tend to decrease. The increase of sea sand replacement ratio is detrimental to specimens’ ultimate bearing capacity and initial stiffness. Finally, the calculation method of the flexural capacity of GFRP bars reinforced seawater sea-sand concrete beams exposed to marine environment is discussed.
1 Li Z, Jin Z Q, Shao S S. Materials Reports, 2018, 32(23), 4170(in Chinese). 李哲, 金祖权, 邵爽爽. 材料导报, 2018, 32(23), 4170. 2 Wang Z K, Zhao X L, Xian G J, et al. Construction and Building Materials, 2017, 139, 467. 3 Xiao J Z, Qiang C B, Nanni A, et al. Construction and Building Materials, 2017, 155, 1101. 4 Hua Y T, Yin S P, Wang L C. Journal of Building Structures, 2021, 42(2), 166(in Chinese). 华云涛, 尹世平, 王璐晨. 建筑结构学报, 2021, 42(2), 166. 5 Zhao J W. Experimental study and theoretical analysis on flexural beha-vior of sea water and sea sand concrete beam reinforced with FRP bars. Master’s Thesis, Inner Mongolia University of Technology, China, 2015(in Chinese). 赵嘉玮. FRP筋海水海砂混凝土梁的受弯性能研究和理论分析. 硕士学位论文, 内蒙古工业大学, 2015. 6 Li L J, Zeng L, Li S W, et al. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2019, 172, 237. 7 Lian J L. Experimental research on durability of FRP reinforced sea sand concrete beams. Master’s Thesis, Southeast University, China, 2017(in Chinese). 连金龙. FRP筋增强海砂混凝土梁耐腐蚀性能试验研究. 硕士学位论文, 东南大学, 2017. 8 Li B N. Durability of flexural behaviors of FRP bars reinforced seawater and sea sand concrete beams under the coupled effects of seawater immersion and sustained load. Master’s Thesis, Dalian University of Technology, China, 2020(in Chinese). 李炳男. 海水浸泡与荷载耦合作用下FRP筋海水海砂混凝土梁抗弯耐久性能研究. 硕士学位论文, 大连理工大学, 2020. 9 混凝土用水标准: JGJ 63-2006, 中国建筑工业出版社, 2006. 10 建设用砂: GB/T 14684-2011, 中国标准出版社, 2011. 11 普通混凝土拌合物性能试验方法标准: GB/T 50080-2016, 中国建筑工业出版社, 2016. 12 混凝土结构耐久性设计标准: GB/T 50476-2019, 中国建筑工业出版社, 2019. 13 混凝土物理力学性能试验方法标准: GB/T 50081-2019, 中国建筑工业出版社, 2019. 14 纤维增强塑料性能试验方法总则: GB/T 1446-2005, 中国标准出版社, 2005. 15 Shi C J, Hu X, Wang X G, et al. Journal of Materials in Civil Engineering, 2017, 29(1), 04016183. 16 Zhang J, Sun M, Hou D, et al. Construction and Building Materials, 2017, 139, 365. 17 Liu J, An R, Jiang Z L, et al. Construction and Building Materials, 2022, 321, 126333. 18 Xuan G Y, Lu C H, Xu K, et al. Journal of Harbin Institute of Technology, 2020, 52(8), 161(in Chinese). 宣广宇, 陆春华, 徐可, 等. 哈尔滨工业大学学报, 2020, 52(8), 161. 19 Dai L. Study on tensile properties of GFRP bars embedded in concrete beams under sustained load and environmental effects. Ph. D. Thesis, Wuhan University of Technology, China, 2017(in Chinese). 代力. 持续荷载与环境作用下混凝土梁中GFRP筋抗拉性能研究. 博士学位论文, 武汉理工大学, 2017. 20 Wu G, Zhu Y, Dong Z Q, et al. China Civil Engineering Journal, 2014, 47(8), 32(in Chinese). 吴刚, 朱莹, 董志强, 等. 土木工程学报, 2014, 47(8), 32. 21 Fu K, Xue W C. Journal of Building Materials, 2014, 17(1), 35(in Chinese). 付凯, 薛伟辰. 建筑材料学报, 2014, 17(1), 35. 22 Davalos J F, Chen Y, Ray I. Journal of Composite Materials, 2012, 46(16), 1899. 23 Kwan W H, Ramli M. Construction and Building Materials, 2013, 48, 780. 24 Kim H Y, Park Y H, You Y J, et al. Composite Structures, 2008, 83(1), 37. 25 Wu G, Dong Z Q, Wang X, et al. Journal of Composites for Construction, 2015, 19(3), 04014058. 26 Zhang J R, Sun M, Hou D S, et al. Construction and Building Materials, 2017, 139, 365. 27 Guo Z H. Reinforced concrete theory, Tsinghua University Press, China, 2013, pp. 181(in Chinese). 过镇海. 钢筋混凝土原理, 清华大学出版社, 2013, pp. 181. 28 Shao H J, Li Z L, Xiao S P, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(9), 2948(in Chinese). 邵化建, 李宗利, 肖帅鹏, 等. 硅酸盐通报, 2021, 40(9), 2948. 29 Al-Salloum Y A, El-Gamal S, Almusallam T H, et al. Composites Part B, Engineering, 2013, 45(1), 835. 30 Zhang X Y, Ou J P. Journal of Wuhan University of Technology, 2007(1), 33(in Chinese). 张新越, 欧进萍. 武汉理工大学学报, 2007(1), 33. 31 Phani K K, Bose N R. Composites Science and Technology, 1987, 29(2), 79. 32 Gao R D, Zhao S B, Li Q B, et al. China Civil Engineering Journal, 2010, 43(2), 48(in Chinese). 高润东, 赵顺波, 李庆斌, 等. 土木工程学报, 2010, 43(2), 48. 33 纤维增强复合材料工程应用技术标准: GB 50608-2020, 中国计划出版社, 2020. 34 Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer(FRP) bars: ACI 440. 1R-15, American Concrete Institute, 2015. 35 Design and construction of building structures with fibre-reinforced polymers: CSA S806-12, Canadian Standards Association, 2012.