Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22050256-9    https://doi.org/10.11896/cldb.22050256
  高分子与聚合物基复合材料 |
GFRP管-石粉地聚物混凝土-钢管组合短柱轴压性能研究
王痛快1,2,3, 赵琪1,2, 雷婷2,4, 杨文伟1,2,*
1 宁夏大学土木与水利工程学院,银川 750021
2 宁夏土木工程防震减灾工程技术研究中心,银川 750021
3 贺州学院建筑与电气工程学院,广西 贺州 542899
4 宁夏大学新华学院,银川 750021
Research on Axial Pressure Performance of GFRP-Stone Dust Geopolymer Concrete-Steel Tubular Columns
WANG Tongkuai1,2,3, ZHAO Qi1,2, LEI Ting2,4, YANG Wenwei1,2,*
1 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
2 Ningxia Center for Research on Earthquake Protection and Disaster Mitigation in Civil Engineering, Yinchuan 750021, China
3 School of Architecture and Electrical Engineering, Hezhou University, Hezhou 542899, Guangxi,China
4 Xinhua College of Ningxia University, Yinchuan 750021,China
下载:  全 文 ( PDF ) ( 9851KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 玻璃钢纤维增强复合材料管-石粉地聚物混凝土-钢管组合柱(DSTC-GC)是一种将废弃大理石粉地聚物混凝土代替普通混凝土而得到的一种新型组合柱。以玻璃钢纤维增强复合材料(GFRP)及钢管的外直径与管厚、混凝土类型、截面空心率等为参数共设计制作了11根试件并开展了轴压性能研究。结果表明:DSTC-GC试件出现三种典型破坏形态,试件曲线呈典型的双线性强化,较普通混凝土DSTC试件发现荷载-钢管应变曲线出现平缓屈服台阶。GFRP及钢管对试件力学性能及变形影响显著,合理的空心率有利于提高DSTC-GC试件材料的使用效率及延性。废弃石粉在DSTC-GC试件中的掺量为50%(质量分数)时试件的轴压性能较好,而普通混凝土DSTC试件轴压性能优于DSTC-GC。基于试验结果,建立了fcc/fc0εcc/εc0λt之间的函数关系,对比发现Gao 等模型更适用DSTC-GC试件承载力计算。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王痛快
赵琪
雷婷
杨文伟
关键词:  GFRP管-石粉地聚物混凝土-钢管组合柱  石粉地聚物混凝土  轴压性能  承载力模型    
Abstract: Glass fiber reinforced polymer tube-stone dust geopolymer concrete-steel tubular columns (DSTC-GC) is a new type of composite column obtained by replacing ordinary concrete with waste marble dust geopolymer concrete. A total of 11 specimens were designed and manufactured to study the axial compression performance of glass fiber reinforced polymer (GFRP) and steel tube thickness, concrete type, section hollow ratio and other parameters. The results show that the DSTC-GC specimen has three typical failure modes, and the curve of the specimen shows typical bilinear strengthening. Compared with the ordinary concrete DSTC specimen, it is found that the load-steel tube strain curve has a gentle yield step. GFRP and steel tube have obvious influence on the mechanical properties and deformation of the specimens. Reasonable hollow ratio is beneficial to improve the efficiency and ductility of DSTC-GC specimens. When the content of waste stone powder is 50% (mass fraction), the axial compression performance of DSTC-GC specimen is better, while the axial compression performance of ordinary concrete DSTC specimen is better than that of DSTC-GC. Based on the test results, the functional relationship between fcc/fc0, εcc/εc0 and λt is established. It is found that Gao et al. ' s model is more suitable for the bearing capacity calculation of DSTC-GC specimens.
Key words:  GFRP-stone dust geopolymer concrete-steel tubular columns    stone dust geopolymer concrete    axial pressure performance    bearing capacity model
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TU398  
基金资助: 国家自然科学基金(52168025);宁夏自然科学基金(2021AAC03116);广西贺州市科技开发计划(贺科攻1908006);广西重点研发计划(桂科AB22036002)
通讯作者:  * 杨文伟,宁夏大学教授、博士研究生导师,宁夏土木工程防震减灾工程技术研究中心主任。1995年本科毕业于宁夏大学土木工程专业,2012年在兰州理工大学结构工程专业博士毕业并获工学博士学位,2017年1月—2018年1月,在美国休斯敦大学智能材料与结构实验室进行了为期一年的访问学者。目前主要从事强震区新型结构体系的减震控制、结构健康监测等防震减灾领域的教学与研究工作。主持国家自然科学基金项目3项,出版专著1部,发表学术论文70余篇,其中SCI、EI收录20余篇,获得宁夏科技进步二等奖1项,宁夏自然科学优秀论文一等奖2项。nxyangww@163.com   
作者简介:  王痛快,宁夏大学水工结构工程专业博士研究生,贺州学院讲师。2017年毕业于广西科技大学结构工程专业,获工学硕士学位。目前主要从事混凝土结构理论及新材料方面的研究。
引用本文:    
王痛快, 赵琪, 雷婷, 杨文伟. GFRP管-石粉地聚物混凝土-钢管组合短柱轴压性能研究[J]. 材料导报, 2023, 37(23): 22050256-9.
WANG Tongkuai, ZHAO Qi, LEI Ting, YANG Wenwei. Research on Axial Pressure Performance of GFRP-Stone Dust Geopolymer Concrete-Steel Tubular Columns. Materials Reports, 2023, 37(23): 22050256-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050256  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22050256
1 Zhang J T. Study on the influence of marble powder on physical and mechanical properties of cement-based materials. Ph.D. Thesis, Guangxi University, China, 2019 (in Chinese).
张金团. 大理石粉对水泥基材料物理力学性能影响研究. 博士学位论文, 广西大学, 2019.
2 Al-Majidi M H, Lampropoulos A, Cundy A, et al. Construction and Building Materials, 2016, 120, 198.
3 Wang L, Li J C, Zhang X W, et al. Inorganic Chemicals Industry, 2022, 54(2),16(in Chinese).
王磊, 李金丞, 张晓伟, 等. 无机盐工业, 2022, 54(2), 16.
4 Yang D, Lu M Y, Song D, et al. Materials Reports, 2021, 35(Z1), 644(in Chinese).
杨达, 卢明阳, 宋迪, 等. 材料导报, 2021, 35(Z1), 644.
5 Simão L, Hotza D, Ribeiro M J, et al. Construction and Building Mate-rials, 2020, 257, 119525.
6 Alyamaç K E, Aydin A B. KSCE Journal of Civil Engineering, 2015, 19(7), 2208.
7 Cheng S. Behavior of hybrid columns of concrete-filled square steel tube with FRP-confined concrete core under axial compression and seismic loading. Ph.D. Thesis, Tsinghua University, China, 2016(in Chinese).
程实. 配置复材管内约束的方钢管混凝土柱轴压及抗震性能研究. 博士学位论文, 清华大学, 2016.
8 Yu T, Teng J G, Wong Y L. Journal of Structural Engineering, 2010, 136(4), 379.
9 Zhang B, Huang T. Joural of Nanjing Tech University (Natural Science Edition), 2017, 39(5), 140(in Chinese).
张冰, 黄涛. 南京工业大学学报(自然科学版), 2017, 39(5), 140.
10 Metallic materials: tensile testing: part 1: method of test at room temperature: GB/T 228.1-2010, China Standard Press, China, 2010. pp. 1 (in Chinese)
金属材料拉伸试验: 第1部分: 室温试验方法: GB/T 228.1-2010, 中国标准出版社, 2010, pp. 1.
11 Zhang N, Zheng Y C, Zhao Z W, et al. Journal of Building Materials, 2021, 24(3), 571(in Chinese).
张霓, 郑晨阳, 赵中伟, 等.建筑材料学报, 2021, 24(3), 571.
12 Fu B, Yang Z X, Bai X Y, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(10), 3115(in Chinese).
傅博, 杨自祥, 白雪玉, 等. 硅酸盐通报, 2020, 39(10), 3115.
13 Shen G K, Qi Y J, Lu J C, et al. Acta Materiae Compositae Sinica, 2022, 39(7), 3388(in Chinese).
沈高奎, 齐玉军, 陆建成, 等.复合材料学报, 2022, 39(7), 3388.
14 Li Z F, Chen J P, Yang L, et al. Chinese Journal of Engineering, 2021, 43(6), 768(in Chinese).
李召峰, 陈经棚, 杨磊, 等. 工程科学学报, 2021, 43(6), 768.
15 Wang G F, Wei Y, Miao K T, et al. Acta Materiae Compositae Sinica, 2022, 39(8), 3982(in Chinese).
王高飞, 魏洋, 缪坤廷, 等.复合材料学报, 2022, 39(8), 3982..
16 Xiang Z H, Zhou J, Niu J G, et al. Acta Materiae Compositae Sinica, 2022, 39(10), 4824(in Chinese).
相泽辉, 周杰, 牛建刚, 等.复合材料学报, 2022, 39(10), 4824.
17 Wu D C. Reseach on Capacity of GFRP-Concrete-Steel Double-Skin Tubular Columns. Master's Thesis, Northeast Petroleum University, China, 2014(in Chinese).
吴殿臣. GFRP管-混凝土-钢管组合短柱承载力分析.硕士学位论文, 东北石油大学, 2014.
18 Gao D Y, Wang D. China Journal of Highway and Transport, 2015, 28(2), 43(in Chinese).
高丹盈, 王代.中国公路学报, 2015, 28(2), 43.
19 Wang J, Zhao J H, Li N, et al. Journal of Xi'an University of Architecture & Technology (Natual Science Edition), 2013, 45(5), 633(in Chinese).
王娟, 赵均海, 李楠, 等. 西安建筑科技大学学报(自然科学版), 2013, 45(5), 633.
20 Wen J P. Research on the mechanical properties of axially loaded GFRP-strength concrete-steel double-skin tubular columns. Master's Thesis, Northeastern University, China, 2011(in Chinese).
温建萍. GFRP管-高强混凝土-钢管组合柱轴压力学性能研究. 硕士学位论文, 东北大学, 2011.
21 Yan Y. Tests of GFRP-concrete-steel double skin tubular short columns under axial compression. Master's Thesis, Huaqiao University, China, 2017(in Chinese).
颜琰. GFRP-混凝土-钢管中空夹层复合结构短柱轴压性能试验研究.硕士学位论文, 华侨大学, 2017.
22 Wang J, Liu W Q, Fang H, et al. Building Structure, 2012(2), 133. (in Chinese).
王俊, 刘伟庆, 方海, 等. 建筑结构, 2012(2), 133.
[1] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[2] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[3] 李京军, 刘威亨, 牛建刚, 李明闯. 不同空心率的方形聚丙烯纤维轻骨料混凝土空心柱的轴压性能[J]. 材料导报, 2021, 35(22): 22057-22062.
[4] 单波, 赖大德, 刘福财. 大尺寸RPC管-HSC组合柱轴压性能试验研究*[J]. CLDB, 2017, 31(23): 96-102.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed