Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22050257-9    https://doi.org/10.11896/cldb.22050257
  高分子与聚合物基复合材料 |
形变导致的蜘蛛大壶状腺丝力学行为的记忆与变异
蒋平1,*, 吕太勇2, 吴丽华3, José Pérez-Rigueiro4,5, 胡梦蕾1, 徐丽萍1, 黄诗怡1, 王安萍1, 郭聪6
1 井冈山大学生命科学学院,生态环境与资源研究所,江西省生物多样性与生态工程重点实验室,江西 吉安 343009
2 西南医科大学附属医院核医学系,四川省核医学与分子影像重点实验室,四川 泸州 646000
3 井冈山大学商学院,江西 吉安 343009
4 马德里理工大学生物医学与技术中心,西班牙 马德里 28223
5 马德里理工大学材料科学系,西班牙 马德里 28040
6 四川大学生命科学学院,生物资源与生态环境教育部重点实验室,成都 610065
Strain Induced Memory and Variation in the Tensile Behavior and Property of Spider Major Ampullate Gland Silk
JIANG Ping1,*, LYU Taiyong2, WU Lihua3, José Pérez-Rigueiro4,5, HU Menglei1, XU Liping1, HUANG Shiyi1, WANG Anping1, GUO Cong6
1 Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-environment and Resources, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
2 Sichuan Key Laboratory of Nuclear-Medicine and Molecular Imaging, Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan,China
3 Business College, Jinggangshan University, Ji'an 343009, Jiangxi, China
4 Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
5 Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, Madrid 28040, Spain
6 Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 13473KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维材料的形变与力学行为之间的关系密切。在自然条件下蛛丝会被反复拉伸,但其被拉伸后的力学行为被搁置的时间与形变效应鲜见报道。为此,本工作采用METS电子万能试验机测试研究了反复定伸长拉伸松弛后的间隔时间与形变对蜘蛛大壶状腺丝的力学行为的影响。结果表明,不论天然的还是经水最大限度超收缩干燥后的大壶状腺丝被定伸长反复拉伸过屈服点和屈服区甚至拉至加强区的力学行为曲线都能很好地重叠;经长时间(≥20 min)间隔后也只需一次拉伸就能不受拉伸历史的影响重现之前的力学行为,具有良好的纵向拉伸的形状与力学行为记忆。通过增加应变值对蜘蛛大壶状腺丝进行一系列的加载-卸载循环试验,并分析这些循环中其应力-应变曲线,计算每个循环中它的弹性模量、屈服应力、吸收和耗散的能量,以评估这些力学性能参数随循环增加的微观进化与演变。研究表明,蜘蛛丝力学行为的记忆与变异可以通过不可逆和可逆两种变形微观机制及其组合来解释,其中材料的粘弹性起主导作用。这些研究对人们进行新型功能纤维材料的仿生设计具有重要的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋平
吕太勇
吴丽华
José Pérez-Rigueiro
胡梦蕾
徐丽萍
黄诗怡
王安萍
郭聪
关键词:  天然高分子材料  蜘蛛大壶状腺丝  形变  力学行为记忆    
Abstract: There is a close relationship between the shape change of fiber materials and their mechanical properties. In the nature, spider silk is repeatedly stretched during performing biological functions, but the shape strain and time effect on structure and tensile behavior properties after stretching by constant elongation is rarely reported. Therefore, the effects of interval and deformation on the mechanical behavior and properties of spider major ampullate gland silk (abb.Mas) were investigated via METS electronic universal testing machine. The results show that the tensile behavior curves of spider Mas whether natural or dried by maximum supercontraction overlap well after stretched over the yield point and even over yield region to the hardening region, the previous mechanical behavior can be reproduced without the influence of the previous stretching history only via being stretched once after long interval (≥20 min) and that spider Mas presents a good shape and mechanical behavior memory of longitudinal stretching. The elastic modulus, yields stress, energy absorbed and energy dissipated in each cycle were computed by performing a series of loading-unloading tests at increasing values of strain and subsequent analysis of the true stress-true strain curves obtained from these cycles in order to evaluate the microevolution of these mechanical parameters with the cycles. It was found that this variation in the mechanical performance of spider silk can be accounted through a combination of irreversible and reversible deformation micromechanisms in which the viscoelasticity of the material plays a leading role. These findings and a new field of research may be helpful to guide the biomimetic design of novel fiber materials.
Key words:  natural polymer materials    spider major ampullate gland silk    deformation    tensile behavior memory
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TS102.3  
  TS102.1  
基金资助: 国家自然科学基金(31960197;31160420;30760041);江西省自然科学基金(20151BAB204019;20202BAB203024);江西省科技厅青年科学家培养对象项目(20133BCB23022);江西省教育厅科技重点项目(GJJ170626);江西省普通本科高校中青年教师发展计划访问学者专项基金项目(2016109);国家级大学生创新创业训练计划项目(201610419008);井冈山大学“庐陵学者”人才项目
通讯作者:  * 蒋平,井冈山大学生命科学学院教授,于1999年7月、2006年7月分别获得四川大学微生物学理学学士和动物学理学博士(师从于国内知名啮齿动物学专家学者郭聪教授、研究员),中国动物学会蛛形学专业委员会第八和第九届委员会委员,江西省高等学校中青年骨干教师,江西省井冈山之星青年科学家培养对象。西班牙马德里理工大学(Universidad Politécnica de Madrid)材料科学系国家公派访问学者,马德里理工大学生物医学与技术中心江西省教育厅公派访问学者。2017年入选井冈山大学“庐陵学者”,2020年获得林浩然动物科学技术一等奖。主要从事蜘蛛丝结构、性能与生物学功能以及蜘蛛生态学方面的研究。主持完成国家自然科学基金项目两项,主持在研国家自然科学基金项目一项,参加完成国家自然科学基金项目两项,主持江西省自然科学基金项目等省级课题五项,参加省级课题三项。在Scientific Report、Soft Matter、Materials Letters、Biomimetics、Journal of the Mechanical Behavior of Biomedical Materials、International Journal of Materials Research、Journal of Biosciences、《材料研究学报》《生物物理学报》《纺织学报》《材料科学与工程学报》《动物学报》《蛛形学报》等期刊上发表论文30余篇。jping412@aliyun.com   
引用本文:    
蒋平, 吕太勇, 吴丽华, José Pérez-Rigueiro, 胡梦蕾, 徐丽萍, 黄诗怡, 王安萍, 郭聪. 形变导致的蜘蛛大壶状腺丝力学行为的记忆与变异[J]. 材料导报, 2023, 37(23): 22050257-9.
JIANG Ping, LYU Taiyong, WU Lihua, José Pérez-Rigueiro, HU Menglei, XU Liping, HUANG Shiyi, WANG Anping, GUO Cong. Strain Induced Memory and Variation in the Tensile Behavior and Property of Spider Major Ampullate Gland Silk. Materials Reports, 2023, 37(23): 22050257-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050257  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22050257
1 Andersson M, Jia Q, Abella A, et al. Nature Chemical Biology, 2017,13(3), 262.
2 Anton A M, Heidebrecht A, Mahmood N, et al. Biomacromolecules, 2017, 18(12), 3954.
3 Wang J L, Zhang H, Zhang W N, et al. ACS Biomaterials Science & Engineering, 2022, 8(3), 1060.
4 Zhang Q, Li M, Hu W B, et al. Stem Cells International, 2021, 7141550.
5 Liu Z H, Liu W, Zhang Y, et al. Optics Express, 2019, 27(15), 21946.
6 Lefèvre T, Auger M. International Materials. Reviews, 2016, 6(2), 127.
7 Lepore E, Isaia M, Pugno N, et al. Scientific Reports, 2016, 6, 24699.
8 Elices M, Guinea G V, Pérez-Rigueiro J, et al. Journal of the Minerals Metals, 2005, 57(2), 60.
9 Du Y, Ma Y E. Acta Materiae Compositae Sinica, 2022, 39(2), 431(in Chinese).
杜永, 马玉娥.复合材料学报, 2022, 39(2), 431.
10 Ping J, Guinea G V, Pérez-Rigueiro J, et al. Scientific Reports, 2014, 4, 7326.
11 Ruiz V, Ping J, Pérez-Rigueiro J, et al. Soft Matter, 2019, 15, 2960.
12 Hu L L, Shao Z Z, Chen X, et al. Biomacromolecules, 2020, 21(12), 5306.
13 Elices M, Perez-Rigueiro J, Guinea GV, et al. Journal of Applied Polymer Science, 2004, 92(6), 3537.
14 Hou L Q, Lu W J, Lu X F, et al. Power Metallugy Industry, 2022, 32 (1), 31(in Chinese).
侯力强, 卢文静, 路晓锋,等.粉末冶金工业, 2022, 32 (1), 31.
15 Sun H H,Wang Q, Li X. Plastics Science and Technology, 2021,49(12), 95(in Chinese).
孙焕红, 王琦, 李霞. 塑料科技,2021,49(12), 95.
16 Yang B H, Qian H, Shi Y F, et al. Materials Reports, 2022, 36(4), 1(in Chinese).
杨博恒, 钱辉, 师亦飞, 等. 材料导报, 2022, 36(4), 1.
17 Andrew T S, Kimberly A L, Todd A B, et al. Journal of the Royal Society Interface, 2012, 9, 1880.
18 Jang P, Liu S, Zhuo C H. Journal of Materials Science & Engineering, 2010, 28(3), 352(in Chinese).
蒋平, 刘姝, 卓春晖.材料科学与工程学报, 2010, 28(3), 352.
19 Perez-Rigueiro J, Elices M, Guinea G V. Polymer, 2003, 44(13), 3733.
20 Guinea G V, Perez-Rigueiro J, Plaza G R, et al. Biomacromolecules, 2006, 7(7), 2173.
21 Garrido M A, Elices M, Pérez-Rigueiro J, et al. Polymer,2002, 43, 4495.
22 Emile O, Floch A L, Vollrath F. Nature: Brief Communication, 2006, 440(30), 621.
23 Na H D. World Rubber Industry, 2009, 36(3), 20(in Chinese).
那洪栋.世界橡胶工业, 2009, 36(3), 20.
24 Jiang P, Lv T Y, Xiao Y H, et al. Journal of Materials Science & Engineering, 2011, 29(5), 734(in Chinese).
蒋平, 吕太勇, 肖永红, 等.材料科学与工程学报, 2011, 29(5), 734.
25 Jiang P, Lv T Y, Xiao Y H, et al. Acta Biophysica Sinica, 2010, 26(2), 149(in Chinese).
蒋平, 吕太勇, 肖永红, 等.生物物理学报, 2010, 26(2),149.
26 Jiang P, Lv T Y, Liao X J, et al. Journal of Textile Research, 2010, 31(5), 1(in Chinese).
蒋平, 肖永红,廖信军,等.纺织学报, 2010, 31(5), 1.
27 Casem M L, Turner D, Houchin K. International Journal of Biological Macromolecules, 1999, 24, 103.
28 Dicko C, Vollrath F, Kenney J M. Biomacromolecules, 2004, 5, 704.
29 Jiang P, Liu H F, Wang C H, et al. Materials Letters, 2006, 60, 919.
30 Perez-Rigueiro J, Plaza G R, Guinea G V, et al. Molecules, 2021, 26(6) 1794.
31 Belen P G, Guinea G V, Perez-Rigueiro J, et al. Soft Matter, 2015, 11(24), 4868.
32 Keten S, Buehler M J. Journal of the Royal Society Interface, 2010, 7(53), 1709.
33 Keten S, Xu Z P, Ihle B, et al. Nature Materials, 2010, 9(4), 359.
34 Nova A, Keten S, Pugno N M, et al. Nano Letters, 2010, 10(7), 2626.
35 Termonia Y. Macromolecules 1994, 27(25), 7378.
36 Termonia Y. Molecular modelling of the stress/strainbehaviour of spider dragline, Pergamon Press, Amsterdam, 2000, pp. 335.
37 Riekel C, Muller M, Vollrath F. Macromolecules, 1999, 32(13), 4464.
38 Savage K N, Guerette P A, Gosline J M. Biomacromolecules, 2004, 5(3), 675.
39 Gosline J M, Denny M W, Demont M E. Nature, 1984, 309(5968), 551.
40 Rousseau M E, Lefevre T, Beaulieu L, et al. Biomacromolecules, 2004, 5(6), 2247.
41 Rousseau M, Lefevre T, Pezolet M. Biomacromolecules, 2009, 10(10), 2945.
42 Gatesy J, Hayashi C, Lewis R, et al. Science, 2001, 291(5513), 2603.
43 Babb P L, Lahens N F, Correa-Garhwal S M, et al. Nature Genetics, 2017, 49(6), 895.
44 Asakura T, Suzuki Y, Nakazawa Y, et al. Prog Nucl Magn Reson Spectrosc, 2013, 69, 23.
45 Jenkins J E, Creager M S, Butler E B, et al. Chemical Communications, 2010, 46(36), 6714.
46 Madurga R, Plaza G R, Pérez-Rigueiro J, et al. Scientific Reports, 2016, 6,18991.
47 Plaza G R, Pérez-Rigueiro J, Riekel C, et al. Soft Matter, 2012, 8, 6015.
48 Perea G B, Riekel C, Perez-Rigueiro J, et al. Scientific Reports, 2013,3, 1.
49 Work R. Journal of Experimental Biology, 1985, 118, 379.
50 Brooks A E, Brothers T J, Lewis R V, et al. Journal of Applied Biomaterials & Biomechanics, 2007, 5(3), 158.
51 Sahni V, Blackledge T A, Dhinojwala A. Nature Communications, 2010, 19, 1.
52 Strobl G. The physics of polymers, Springer, Berlin, 1996.
53 Liu Y, Shao Z Z, Vollrath F. Chemical Communications, 2005, 41(19), 2489.
54 Work R W, Morosoff N. Textile Research Journal, 1982, 52(5), 349.
[1] 赵嘉豪, 庞玉华, 孙琦, 牛犇, 刘东, 张喆. 剧烈扭转压缩轧制45钢超细晶棒组织演变机理[J]. 材料导报, 2023, 37(15): 22010069-5.
[2] 张道琦, 张林, 郭晓, 王恩刚. Cu-Ag高强高导合金的研究现状与进展[J]. 材料导报, 2023, 37(13): 21040152-6.
[3] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[4] 于娟, 李国爱, 冯朝辉, 陈军洲, 赵唯一. 中间形变热处理对铝锂合金短横向拉伸性能的影响[J]. 材料导报, 2022, 36(18): 20060118-5.
[5] 朱奕瑶, 冯俊强, 张增耀, 杨哲宁, 张向鹏, 王红霞. 形变热处理对Mg-4Al-1Si-1Gd合金组织及性能的影响[J]. 材料导报, 2021, 35(20): 20149-20154.
[6] 李廷廷, 刘锦春. 硬段含量对聚酯型温敏聚氨酯弹性体性能的影响[J]. 材料导报, 2021, 35(2): 2161-2165.
[7] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[8] 田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118.
[9] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[10] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[11] 夏雨, 王快社, 胡平, 胡卜亮, 李世磊, 陈文静, 周宇航, 冯鹏发. 纯钼金属高温塑性变形行为研究进展[J]. 材料导报, 2019, 33(19): 3277-3289.
[12] 方杰, 易幼平, 黄始全, 何海林, 郭万富. 预拉伸变形对2219铝合金环形件组织与力学性能的影响[J]. 材料导报, 2019, 33(18): 3062-3066.
[13] 巴奇楠, 宋仁伯, 冯一帆, 李论. 表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理[J]. 材料导报, 2019, 33(10): 1712-1716.
[14] 周思源,金剑锋,王璐,曹敬祎,杨培军. 多尺度模拟研究纳米凸体几何形貌对初始塑性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 316-321.
[15] 苏剑, 张辉, 滕杰, 蒋福林, 孙轶山. 冷轧前热处理对6016-T4P铝合金组织和力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 87-91.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed