Strain Induced Memory and Variation in the Tensile Behavior and Property of Spider Major Ampullate Gland Silk
JIANG Ping1,*, LYU Taiyong2, WU Lihua3, José Pérez-Rigueiro4,5, HU Menglei1, XU Liping1, HUANG Shiyi1, WANG Anping1, GUO Cong6
1 Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Eco-environment and Resources, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China 2 Sichuan Key Laboratory of Nuclear-Medicine and Molecular Imaging, Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan,China 3 Business College, Jinggangshan University, Ji'an 343009, Jiangxi, China 4 Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain 5 Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, Madrid 28040, Spain 6 Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
Abstract: There is a close relationship between the shape change of fiber materials and their mechanical properties. In the nature, spider silk is repeatedly stretched during performing biological functions, but the shape strain and time effect on structure and tensile behavior properties after stretching by constant elongation is rarely reported. Therefore, the effects of interval and deformation on the mechanical behavior and properties of spider major ampullate gland silk (abb.Mas) were investigated via METS electronic universal testing machine. The results show that the tensile behavior curves of spider Mas whether natural or dried by maximum supercontraction overlap well after stretched over the yield point and even over yield region to the hardening region, the previous mechanical behavior can be reproduced without the influence of the previous stretching history only via being stretched once after long interval (≥20 min) and that spider Mas presents a good shape and mechanical behavior memory of longitudinal stretching. The elastic modulus, yields stress, energy absorbed and energy dissipated in each cycle were computed by performing a series of loading-unloading tests at increasing values of strain and subsequent analysis of the true stress-true strain curves obtained from these cycles in order to evaluate the microevolution of these mechanical parameters with the cycles. It was found that this variation in the mechanical performance of spider silk can be accounted through a combination of irreversible and reversible deformation micromechanisms in which the viscoelasticity of the material plays a leading role. These findings and a new field of research may be helpful to guide the biomimetic design of novel fiber materials.
通讯作者:
* 蒋平,井冈山大学生命科学学院教授,于1999年7月、2006年7月分别获得四川大学微生物学理学学士和动物学理学博士(师从于国内知名啮齿动物学专家学者郭聪教授、研究员),中国动物学会蛛形学专业委员会第八和第九届委员会委员,江西省高等学校中青年骨干教师,江西省井冈山之星青年科学家培养对象。西班牙马德里理工大学(Universidad Politécnica de Madrid)材料科学系国家公派访问学者,马德里理工大学生物医学与技术中心江西省教育厅公派访问学者。2017年入选井冈山大学“庐陵学者”,2020年获得林浩然动物科学技术一等奖。主要从事蜘蛛丝结构、性能与生物学功能以及蜘蛛生态学方面的研究。主持完成国家自然科学基金项目两项,主持在研国家自然科学基金项目一项,参加完成国家自然科学基金项目两项,主持江西省自然科学基金项目等省级课题五项,参加省级课题三项。在Scientific Report、Soft Matter、Materials Letters、Biomimetics、Journal of the Mechanical Behavior of Biomedical Materials、International Journal of Materials Research、Journal of Biosciences、《材料研究学报》《生物物理学报》《纺织学报》《材料科学与工程学报》《动物学报》《蛛形学报》等期刊上发表论文30余篇。jping412@aliyun.com
引用本文:
蒋平, 吕太勇, 吴丽华, José Pérez-Rigueiro, 胡梦蕾, 徐丽萍, 黄诗怡, 王安萍, 郭聪. 形变导致的蜘蛛大壶状腺丝力学行为的记忆与变异[J]. 材料导报, 2023, 37(23): 22050257-9.
JIANG Ping, LYU Taiyong, WU Lihua, José Pérez-Rigueiro, HU Menglei, XU Liping, HUANG Shiyi, WANG Anping, GUO Cong. Strain Induced Memory and Variation in the Tensile Behavior and Property of Spider Major Ampullate Gland Silk. Materials Reports, 2023, 37(23): 22050257-9.
1 Andersson M, Jia Q, Abella A, et al. Nature Chemical Biology, 2017,13(3), 262. 2 Anton A M, Heidebrecht A, Mahmood N, et al. Biomacromolecules, 2017, 18(12), 3954. 3 Wang J L, Zhang H, Zhang W N, et al. ACS Biomaterials Science & Engineering, 2022, 8(3), 1060. 4 Zhang Q, Li M, Hu W B, et al. Stem Cells International, 2021, 7141550. 5 Liu Z H, Liu W, Zhang Y, et al. Optics Express, 2019, 27(15), 21946. 6 Lefèvre T, Auger M. International Materials. Reviews, 2016, 6(2), 127. 7 Lepore E, Isaia M, Pugno N, et al. Scientific Reports, 2016, 6, 24699. 8 Elices M, Guinea G V, Pérez-Rigueiro J, et al. Journal of the Minerals Metals, 2005, 57(2), 60. 9 Du Y, Ma Y E. Acta Materiae Compositae Sinica, 2022, 39(2), 431(in Chinese). 杜永, 马玉娥.复合材料学报, 2022, 39(2), 431. 10 Ping J, Guinea G V, Pérez-Rigueiro J, et al. Scientific Reports, 2014, 4, 7326. 11 Ruiz V, Ping J, Pérez-Rigueiro J, et al. Soft Matter, 2019, 15, 2960. 12 Hu L L, Shao Z Z, Chen X, et al. Biomacromolecules, 2020, 21(12), 5306. 13 Elices M, Perez-Rigueiro J, Guinea GV, et al. Journal of Applied Polymer Science, 2004, 92(6), 3537. 14 Hou L Q, Lu W J, Lu X F, et al. Power Metallugy Industry, 2022, 32 (1), 31(in Chinese). 侯力强, 卢文静, 路晓锋,等.粉末冶金工业, 2022, 32 (1), 31. 15 Sun H H,Wang Q, Li X. Plastics Science and Technology, 2021,49(12), 95(in Chinese). 孙焕红, 王琦, 李霞. 塑料科技,2021,49(12), 95. 16 Yang B H, Qian H, Shi Y F, et al. Materials Reports, 2022, 36(4), 1(in Chinese). 杨博恒, 钱辉, 师亦飞, 等. 材料导报, 2022, 36(4), 1. 17 Andrew T S, Kimberly A L, Todd A B, et al. Journal of the Royal Society Interface, 2012, 9, 1880. 18 Jang P, Liu S, Zhuo C H. Journal of Materials Science & Engineering, 2010, 28(3), 352(in Chinese). 蒋平, 刘姝, 卓春晖.材料科学与工程学报, 2010, 28(3), 352. 19 Perez-Rigueiro J, Elices M, Guinea G V. Polymer, 2003, 44(13), 3733. 20 Guinea G V, Perez-Rigueiro J, Plaza G R, et al. Biomacromolecules, 2006, 7(7), 2173. 21 Garrido M A, Elices M, Pérez-Rigueiro J, et al. Polymer,2002, 43, 4495. 22 Emile O, Floch A L, Vollrath F. Nature: Brief Communication, 2006, 440(30), 621. 23 Na H D. World Rubber Industry, 2009, 36(3), 20(in Chinese). 那洪栋.世界橡胶工业, 2009, 36(3), 20. 24 Jiang P, Lv T Y, Xiao Y H, et al. Journal of Materials Science & Engineering, 2011, 29(5), 734(in Chinese). 蒋平, 吕太勇, 肖永红, 等.材料科学与工程学报, 2011, 29(5), 734. 25 Jiang P, Lv T Y, Xiao Y H, et al. Acta Biophysica Sinica, 2010, 26(2), 149(in Chinese). 蒋平, 吕太勇, 肖永红, 等.生物物理学报, 2010, 26(2),149. 26 Jiang P, Lv T Y, Liao X J, et al. Journal of Textile Research, 2010, 31(5), 1(in Chinese). 蒋平, 肖永红,廖信军,等.纺织学报, 2010, 31(5), 1. 27 Casem M L, Turner D, Houchin K. International Journal of Biological Macromolecules, 1999, 24, 103. 28 Dicko C, Vollrath F, Kenney J M. Biomacromolecules, 2004, 5, 704. 29 Jiang P, Liu H F, Wang C H, et al. Materials Letters, 2006, 60, 919. 30 Perez-Rigueiro J, Plaza G R, Guinea G V, et al. Molecules, 2021, 26(6) 1794. 31 Belen P G, Guinea G V, Perez-Rigueiro J, et al. Soft Matter, 2015, 11(24), 4868. 32 Keten S, Buehler M J. Journal of the Royal Society Interface, 2010, 7(53), 1709. 33 Keten S, Xu Z P, Ihle B, et al. Nature Materials, 2010, 9(4), 359. 34 Nova A, Keten S, Pugno N M, et al. Nano Letters, 2010, 10(7), 2626. 35 Termonia Y. Macromolecules 1994, 27(25), 7378. 36 Termonia Y. Molecular modelling of the stress/strainbehaviour of spider dragline, Pergamon Press, Amsterdam, 2000, pp. 335. 37 Riekel C, Muller M, Vollrath F. Macromolecules, 1999, 32(13), 4464. 38 Savage K N, Guerette P A, Gosline J M. Biomacromolecules, 2004, 5(3), 675. 39 Gosline J M, Denny M W, Demont M E. Nature, 1984, 309(5968), 551. 40 Rousseau M E, Lefevre T, Beaulieu L, et al. Biomacromolecules, 2004, 5(6), 2247. 41 Rousseau M, Lefevre T, Pezolet M. Biomacromolecules, 2009, 10(10), 2945. 42 Gatesy J, Hayashi C, Lewis R, et al. Science, 2001, 291(5513), 2603. 43 Babb P L, Lahens N F, Correa-Garhwal S M, et al. Nature Genetics, 2017, 49(6), 895. 44 Asakura T, Suzuki Y, Nakazawa Y, et al. Prog Nucl Magn Reson Spectrosc, 2013, 69, 23. 45 Jenkins J E, Creager M S, Butler E B, et al. Chemical Communications, 2010, 46(36), 6714. 46 Madurga R, Plaza G R, Pérez-Rigueiro J, et al. Scientific Reports, 2016, 6,18991. 47 Plaza G R, Pérez-Rigueiro J, Riekel C, et al. Soft Matter, 2012, 8, 6015. 48 Perea G B, Riekel C, Perez-Rigueiro J, et al. Scientific Reports, 2013,3, 1. 49 Work R. Journal of Experimental Biology, 1985, 118, 379. 50 Brooks A E, Brothers T J, Lewis R V, et al. Journal of Applied Biomaterials & Biomechanics, 2007, 5(3), 158. 51 Sahni V, Blackledge T A, Dhinojwala A. Nature Communications, 2010, 19, 1. 52 Strobl G. The physics of polymers, Springer, Berlin, 1996. 53 Liu Y, Shao Z Z, Vollrath F. Chemical Communications, 2005, 41(19), 2489. 54 Work R W, Morosoff N. Textile Research Journal, 1982, 52(5), 349.