Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8106-8112    https://doi.org/10.11896/cldb.19030088
  金属及金属基复合材料 |
AA7021铝合金热变形行为及微观组织演变机理的研究
仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛
北京科技大学工程技术研究院,北京 100083
Study on Hot Deformation Behavior and Microstructure Evolution Mechanism of AA7021 Aluminum Alloy
QIU Peng, WANG Jiayi, DUAN Xiaoge, LIN Hongtao, CHEN Kang, JIANG Haitao
Institute of Engineering and Technology, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 10432KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Gleeble-3500热模拟试验机对AA7021铝合金在变形温度为350~490 ℃、应变速率为0.01~10 s-1的热变形条件下进行热压缩试验。建立基于应变的本构方程以及材料热变形特征的热加工图,并对热加工图中安全区和失稳区的显微组织进行分析。结果表明,在安全区有形变诱导析出;在变形失稳区内,当变形温度较低、应变速率较高时,由于应变热效应的作用,形成了绝热剪切带。另外,在应变速率大于1 s-1的区域中发现导致铝合金热加工性能变差的原因有局部流变、大粒子破碎脱粘、微观裂纹等。在热变形过程中,随着温度的升高,铝合金的动态软化机制由动态回复转向动态再结晶。AA7021铝合金在中温、高温热压缩过程中共存着多种软化机制,但动态回复占主导地位。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仇鹏
王家毅
段晓鸽
蔺宏涛
陈康
江海涛
关键词:  AA7021铝合金  本构方程  热加工图  形变诱导析出  软化机制    
Abstract: Athermal compression experiment for AA7021 aluminum under a temperature ranging from 350—490 ℃ and a strain rate ranging from 0.01—10 s-1 was carried out by using gleeble-3500 thermal simulation test machine. A strain-based constitutive equation and a thermal processing diagram of the thermal deformation characteristic of the material was established and the microstructure of the safety zone and the instability zone in the thermal processing diagram was analyzed. The results show that the deformation induced precipitation effect is found in the safety zone. In the deformation instability zone, when the deformation temperature became lower and strain rate became high, the adiabatic shear zone is formed due to the effect of strain heat. In addition, in the region where the strain rate is greater than 1 s-1, the cause of deterioration of aluminum hot workability are found to be local rheology, large particle breakage, microcrack, etc. During the thermal deformation process, the dynamic softe-ning mechanism of aluminum changes from dynamic recovery to dynamic recrystallization as the temperature increase. AA7021 aluminum alloy coexists a variety of softening mechanism in the medium temperature and high temperature compression process, but dynamic recovery still dominates.
Key words:  AA7021 aluminum alloy    constitutive equation    thermal processing diagram    deformation induced precipitation    softening mechanism
                    发布日期:  2020-04-25
ZTFLH:  TG146.21  
基金资助: 广西科技重大专项(桂科AA17202008-2)
通讯作者:  jianght@ustb.edu.cn   
作者简介:  仇鹏,北京科技大学硕士研究生,2013年9月—2017年7月在烟台南山学院获得材料成型及控制工程学士学位。2017年至今在北京科技大学攻读硕士学位。研究工作主要围绕铝合金的汽车板技术研究、品种开发。
江海涛,北京科技大学研究员,博士研究生导师。主要从事钢铁、有色金属材料的品种开发及板带生产技术研究。在研国家自然科学基金、国家重点研发计划、北京市科技计划项目十余项,发表学术论文二百余篇,获授权专利十余项,省部级一等奖二项。
引用本文:    
仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
QIU Peng, WANG Jiayi, DUAN Xiaoge, LIN Hongtao, CHEN Kang, JIANG Haitao. Study on Hot Deformation Behavior and Microstructure Evolution Mechanism of AA7021 Aluminum Alloy. Materials Reports, 2020, 34(8): 8106-8112.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030088  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8106
1 Miller W S, Zhuang L, Bottema J, et al. Material Science and Enginee-ring A, 2000, 280(l), 37.
2 Sakural T. Kobelco Technology Review, 2006, 28(28), 22.
3 Wang Y G, Study of formability properties of 5182 aluminum alloy automobile plate. Master’s Thesis, Chongqing University, China, 2016(in Chinese).
王游根. 5182铝合金汽车板成形性能的研究. 硕士学位论文, 重庆大学, 2016.
4 Fu J, Qi W J, Li Y, et al. Materials Research and Application, 2016, 10(3), 3(in Chinese).
付锦, 戚文军, 李亚军, 等. 材料研究与应用, 2016, 10(3), 3.
5 Barberis Pinlung S. 7xxx aluminum sheets for automotive applications. Master Theses, University of Windsor, 2015.
6 Dai Q S, Ou S S, Deng Y L, et al.Materials Review B: Research Papers, 2017, 31(7), 7(in Chinese).
戴青松, 欧世声, 邓运来, 等. 材料导报: 研究篇, 2017, 31(7), 7.
7 Huang C Q, Diao J P, Deng H, et al. Transactions of Nonferrous Metals Society of China, 2013(6), 1576(in Chinese).
黄长清, 刁金鹏, 邓华, 等.中国有色金属学报, 2013(6), 1576.
8 Li D F, Zhang D Z, Liu D S, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(6), 1491(in Chinese).
李东锋, 张端正, 刘胜胆, 等. 中国有色金属学报, 2016, 26(6), 1491.
9 Chen S Y, Chen K H, Jia L, et al.Transactions of Nonferrous Metals Society of China, 2013, 23(2), 329(in Chinese).
陈宋义, 陈康华, 贾乐, 等. 中国有色金属学报, 2013, 23(2), 329.
10 Roboson J D, Prangnell P B.Material Science and Technology, 2002, 18(6), 607.
11 Fu L, Wang B Y, Zhou J, et al. Journal of Plasticity Engineering, 2013, 20(2), 107.
12 Prasad Y V R K, Gegel H L, Doraivelu S M. Metallurgical transactions, 1984, 15(10), 1883.
13 Prasad Y V R K. Journal of Materials Engineering and performance, 2003, 12(6), 638.
14 Ramanathan S, Karthikeyan R, Gupta M.Journal of Materials Processing Technology, 2007, 183(1), 104.
15 Venugopal S, Venugopal P, Mannan S L. Journal of Materials Processing Technology, 2008, 202(1-3), 201.
16 Frost H J, Ashby M F. Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon press, UK, 1982.
17 Hao A G, Ji W, Hao H L.Hot Working Technology, 2018, 47(17), 141(in Chinese).
郝爱国, 吉卫, 郝花蕾. 热加工工艺, 2018, 47(17), 141.
18 Wang X X, Zhang X, Wang H D, et al. Special Casting & Nonferrous Alloys, 2017, 37(9), 944(in Chinese).
王晓溪, 张翔, 王华东, 等. 特种铸造及有色合金, 2017, 37(9), 944.
19 Robinson J S, Tanner D A, Truman C E, et al.Material Characterization, 2012, 65, 73.
20 Liu S, Zhong Q, Zhang Y, et al.Material & Design, 2013, 31(6), 3116.
21 Davies R K, Randle V, Marshall.Acta Materialia, 1998, 46(17), 6021.
22 Humphreys F J. Acta Metallurgica, 1977, 25(11), 1323.
23 Taylor G. Progress in materials science, 1992, 36, 29.
24 Rao K P, Prasad Y. Journal of Mechanical Working Technology, 1986, 13(1), 83.
25 Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena. Elsevier, UK, 2012.
26 Gourdet S, Montheillet F. Material Science & Engineering A, 2000, 283(l), 274.
27 Shimizu I. Journal of Structural Geology, 2008, 30(7), 89.
[1] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[2] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[3] 胡余生, 冯迪, 周建党, 朱田, 张豪, 张捷, 范曦, 宋飞刀. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图[J]. 材料导报, 2020, 34(10): 10120-10125.
[4] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[5] 夏雨, 王快社, 胡平, 胡卜亮, 李世磊, 陈文静, 周宇航, 冯鹏发. 纯钼金属高温塑性变形行为研究进展[J]. 材料导报, 2019, 33(19): 3277-3289.
[6] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[7] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[8] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[9] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[10] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[11] 吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
[12] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[13] 常若寒, 蔡中义, 程丽任, 车朝杰, 迟佳轩. 基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图[J]. 《材料导报》期刊社, 2017, 31(6): 136-139.
[14] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[15] 陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed