Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4113-4117    https://doi.org/10.11896/cldb.19020128
  金属与金属基复合材料 |
新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为
吕鹏1, 陈亚楠1, 关庆丰1, 李姚君2, 许亮2, 丁佐军2
1 江苏大学材料科学与工程学院,镇江 212013;
2 无锡派克新材料科技股份有限公司,无锡 214161
The High-temperature Deformation Behavior of Novel 11Cr12Ni3Mo2VN Heat Resistant Steel for Ultra-supercritical Units
LYU Peng1, CHEN Yanan1, GUAN Qingfeng1, LI Yaojun2, XU Liang2, DING Zuojun2
1 Department of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;
2 Wuxi Parker New Materials Technology Co. Ltd., Wuxi 214161, China
下载:  全 文 ( PDF ) ( 4860KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过Gleeble-3500热模拟试验机对11Cr12Ni3Mo2VN马氏体耐热钢进行等温热压缩实验,研究了其在变形温度T为900~1 050 ℃、应变速率为0.001~10 s-1条件下的热变形行为,确定了材料的热变形参数。通过对峰值应力的拟合建立了热变形本构方程,并对本构方程的准确性进行了验证,发现建立的本构方程能够准确预测材料在高温变形时的流变应力。根据ln[sinh(ασ)]-ln曲线求得材料的热变形表观激活能Q为450.988 kJ/mol。以动态材料模型和Murthy失稳判据为理论基础绘制了热加工图,结合应力-应变曲线,确定了11Cr12Ni3Mo2VN耐热钢的最佳加工工艺参数:加工温度为980~1 050 ℃,应变速率为0.1 s-1或更小。还利用光镜研究了加工温度、应变速率等热变形参数对材料微观组织演变的影响。结果表明,热变形温度和应变速率都会影响11Cr12Ni3Mo2VN耐热钢的动态回复和动态再结晶机制。加工温度起决定性作用,在温度较低的条件下,材料的动态回复机制占主导;随着温度的升高,材料的软化机制以动态再结晶为主。应变速率对动态再结晶晶粒尺寸的影响较大,低应变速率有利于动态再结晶的充分进行,晶粒大小更加均匀,材料在热变形后的性能更加优异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕鹏
陈亚楠
关庆丰
李姚君
许亮
丁佐军
关键词:  马氏体耐热钢  11Cr12Ni3Mo2VN  热变形  本构方程  热加工图  动态再结晶    
Abstract: The purpose of this paper was to investigate the thermal deformation behavior of 11Cr12Ni3Mo2VN martensite heat-resistant steel and establish the optimal thermal deformation processing parameters of the material. In this paper, 11Cr12Ni3Mo2VN martensite heat-resistant steel was isothermal heat-compressed by Gleeble-3500 thermal simulation tester at the condition of the temperatures ranging from 900 ℃ to 1 050 ℃ and strain rate in the range of 0.001—10 s-1. Established a constitutive equation by fitting the peak stress and verified the accuracy of the constitutive equation. It was found that the established constitutive equation have a high prediction precision on the flow stress of the material. By calculating and analysing of the experimental data, the apparent activation energy (Q) was determined to be 450.988 kJ/mol. Drawn the thermal processing maps based on the dynamic material model and Murthy's instability criterion. The optimal processing parameters of 11Cr12Ni3Mo2VN heat-resistant steel was determine by the thermal processing maps and the stress-strain curves. The specific parameters were as follows: the processing temperature from 980 ℃ to 1 050 ℃ and the strain rate of 1 s-1 or less. The effects of the thermal deformation parameters such as temperature and strain rate on the microstructure evolution of the material were studied through OM.The results show that the temperature and strain rate have a great influence on the generation and degree of dynamic recovery and recrystallization. The processing temperature plays a decisive role in the evolution of the microstructures, the dynamic recovery dominates at low temperatures, and the degree of dynamic recrystallization rose as the temperature increased. In addition,the strain rates have a great influence on the size of dynamically recrystallized grains. The low strain rate is beneficial to the full division of dynamic recrystallization, the grain size is more uniform, and the material has more excellent performance after thermal deformation.
Key words:  martensitic heat-resistant steel    11Cr12Ni3Mo2VN    high-temperature deformation    constitutive equation    hot processing map    dynamic recrystallization
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TG142.73  
基金资助: 国家自然科学基金(51601071);江苏大学青年英才培育计划项目;江苏省博士后科研资助计划(2018K025B);江苏省研究生科研 实践创新项目(KYCX18-2236)
通讯作者:  lvp@mail.ujs.edu.cn   
作者简介:  吕鹏,2014年6月毕业于江苏大学材料科学与工程学院,材料学博士。同年加入江苏大学材料科学与工程学院实验中心工作至今,主要从事金属材料微观结构分析、失效分析及金属材料表面改性的研究。
引用本文:    
吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
LYU Peng, CHEN Yanan, GUAN Qingfeng, LI Yaojun, XU Liang, DING Zuojun. The High-temperature Deformation Behavior of Novel 11Cr12Ni3Mo2VN Heat Resistant Steel for Ultra-supercritical Units. Materials Reports, 2020, 34(4): 4113-4117.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020128  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4113
1 Xie X L, Yang G, Chen J C, et al. Heat Treatment, 2009, 24(5), 35(in Chinese).
谢学林, 杨钢, 陈敬超, 等. 热处理, 2009, 24(5), 35.
2 Liao H J, Yao C G, Wang M, et al. Baosteel Technology, 2009(1), 56(in Chinese).
廖洪军, 姚长贵, 王敏, 等. 宝钢技术, 2009(1), 56.
3 Li J R, Zhou L Y, Gong C, et al. Transactions of Materials and Heat Treatment, 2014, 35(6), 106(in Chinese).
李俊儒, 周乐育, 龚臣, 等. 材料热处理学报,2014, 35(6), 106.
4 Zhu H S, Nie Y H, Bai Y G,et al. Forging Technology, 2016, 41(9), 7(in Chinese).
朱怀沈, 聂义宏, 白亚冠, 等. 锻压技术, 2016, 41(9), 7.
5 Rojas D, Garcia J, Prat O, et al. Materials Science & Engineering A, 2011, 528(3), 1372.
6 Lee K H, Hong S M, Shim J H, et al. Materials Characterization, 2015, 102, 79.
7 Lee K H, Suh J Y, Hong S M, et al. Materials Characterization, 2015, 106, 266.
8 Yin F S, Jung W S, Chung S H. Scripta Materialia, 2007, 57(6), 469.
9 Wang Z, Fu W, Wang B, et al. Materials Characterization, 2010, 61(1), 25.
10 Churyumov A Y, Khomutov M G, Solonin A N, et al. Materials & Design, 2015, 74, 44.
11 Ji H C, Liu J P, Wang B Y, et al. Journal of Alloys & Compounds, 2017, 693, 674.
12 Cai Z M, Ji H C, Pei W H, et al. Vacuum, 2019, 165, 324.
13 Bo Xiao, Lianyong Xu, Lei Zhao et al. Materials Science & Engineering A, 2019, 756, 336.
14 Wang Z M, Wang Y H, Cao W Q, et al. Transactions of Materials and Heat Treatment,2017, 38(1), 191(in Chinese).
王志蒙, 王玉辉, 曹文全, 等. 材料热处理学报, 2017, 38(1), 191.
15 Yagi K, Fujio Abe. Encyclopedia of Materials Science & Technology, 2001, 16(9), 1840.
16 Hamed M. Mechanics of Materials, 2015, 85, 66.
17 Zeng W D, Zhou Y G,Zhou J,et al. Rare Metal Materials and Engi-nering, 2006, 35(5), 673(in Chinese).
曾卫东, 周义刚, 周军, 等. 稀有金属材料与工程, 2006, 35(5), 67.
18 Qin F C, Li Y T. Journal of Mechanical Engineering,2016, 52(4), 45(in Chinese).
秦芳诚, 李永堂. 机械工程学报, 2016, 52(4), 45.
19 Murty S V S N, Rao B N. Materials Science and Engieering A, 1998, 254(1-2), 76.
20 Dipti Samantaray, Sumantra Mandal, et al. Materials Science and Engineering A, 2011, 528(15), 5204
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[3] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[4] 朱利敏, 李全安, 陈晓亚, 张清, 王颂博, 张帅. Mg-8Gd-0.5Zr合金热压缩过程中动态再结晶行为[J]. 材料导报, 2019, 33(24): 4117-4121.
[5] 夏雨, 王快社, 胡平, 胡卜亮, 李世磊, 陈文静, 周宇航, 冯鹏发. 纯钼金属高温塑性变形行为研究进展[J]. 材料导报, 2019, 33(19): 3277-3289.
[6] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[7] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[8] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[9] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[10] 江旭, 马煜林, 刘越. 回火温度对CB2钢的含硼M23C6相析出及力学性能的影响[J]. 材料导报, 2019, 33(12): 2062-2066.
[11] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[12] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[13] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[14] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[15] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed