Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1306-1310    https://doi.org/10.11896/j.issn.1005-023X.2018.08.019
  材料研究 |
轧制态7A60铝合金的热压缩显微组织及流变行为
薛克敏1, 薄冬青2, 李萍1
1 合肥工业大学材料科学与工程学院,合肥 230009;
2 合肥工业大学智能制造技术研究院,合肥 230009
Hot Compression Microstructure and Rheological Behavior of Rolled 7A60 Aluminum Alloy
XUE Kemin1, BO Dongqing2, LI Ping1
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009;
2 Intelligent Manufacturing Institute of HFUT, Hefei 230009
下载:  全 文 ( PDF ) ( 1846KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对轧制态7A60铝合金在应变速率为0.1~0.01 s-1、变形温度为250~350 ℃条件下热压缩的显微组织特征和流变应力进行实验研究。结果表明:随着应变速率的降低和温度的升高,材料的各向异性减弱,均匀性增强,晶粒发生明显粗化;在热变形的过程中该合金的主要软化机制为动态回复和动态再结晶,峰值应力随应变速率的增加而增大,随温度的升高而降低,在应变速率为0.01 s-1时发生了明显的非连续动态再结晶行为。合金热变形的流变应力行为可用双曲正弦函数来表示,其热激活能为438.981 kJ/mol。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛克敏
薄冬青
李萍
关键词:  7A60铝合金  热压缩  显微组织  流变应力  本构方程    
Abstract: The microstructral characteristics and flow behaviors of rolled 7A60 aluminum alloy experienced hot compression were investigated within a stress rate range of 0.1—0.01 s-1 and a temperature range of 250—350 ℃.The results confirmed the wea-kened anisotropy, the enhanced uniformity, and the obviously coarsened grain for the material with the decrease in strain rate and the increase in temperature. In the process of thermal deformation, the main softening mechanism is dynamic recovery and dynamic recrystallization. The peak stress increases with the increase of strain rate and decreases with the increase of temperature. And at the strain rate of 0.01 s-1, a significant discontinuous dynamic recrystallization behavior occurred. The rheological behavior of the alloy can be characterized by a hyperbolic sine function with a thermal activation energy of 438.981 kJ/mol.
Key words:  7A60 aluminum alloy    hot compression    microstructure    flow stress    constitutive equation
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG376  
基金资助: 国家自然科学基金(51575153)
作者简介:  薛克敏:男,1963年生,博士,教授,博士研究生导师,研究方向为精密塑性成形工艺与仿真 E-mail:xuekm0721@sina.com
引用本文:    
薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
XUE Kemin, BO Dongqing, LI Ping. Hot Compression Microstructure and Rheological Behavior of Rolled 7A60 Aluminum Alloy. Materials Reports, 2018, 32(8): 1306-1310.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.019  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1306
1 Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloy and its material preparation and processing technology[J].Acta Metallurgica Sinica,2015,51(3):257(in Chinese).
张新明,邓运来,张勇.高强铝合金的发展及其材料的制备加工技术[J].金属学报,2015,51(3):257.
2 Yang H T, Lu Z, Gu J L. Study on flow stress of 7A60 aluminum alloy[J].Journal of Aeronautical Materials,2005,25(2):12(in Chinese).
杨洪涛,陆政,顾家琳.7A60铝合金流变应力的研究[J].航空材料学报,2005,25(2):12.
3 Wang Xuehui, Wang Jihui, Fu Congwei. Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques[J].Transactions of Nonferrous Metals Society of China,2014,24(12):390.
4 Wang J L, Li P, Xue K M, et al. Failure analysis and improvement of cup-shaped isothermal and torsion composite mold[J].Journal of Harbin Institute of Technology,2015,47(11):113(in Chinese).
王久林,李萍,薛克敏,等.杯形件等温压扭复合成形模具失效分析及改进[J].哈尔滨工业大学学报,2015,47(11):113.
5 Li P, Zhang X, Xue K M, et al. New process deformation of pure aluminum isometric corner twist[J].Chinese Journal of Plastic Engineering,2010,17(5):47(in Chinese).
李萍,张翔,薛克敏,等.纯铝等径角挤扭新工艺变形[J].塑性工程学报,2010,17(5):47.
6 Qiu L L, Gao W L, Lu Z, et al. Hot-compression rheological beha-vior and microstructure of 7A85 aluminum alloy[J].Materials Engineering,2016,44(1):33(in Chinese).
仇琍丽,高文理,陆政,等.7A85铝合金的热压缩流变行为与显微组织[J].材料工程,2016,44(1):33.
7 Chen X H, Chen K H, Liang X. Flow stress behavior and microstructure of 7085 aluminum alloy thermal deformation[J].Journal of Aeronautical Materials,2011,16(2):225(in Chinese).
陈学海,陈康华,梁信.7085铝合金热变形的流变应力行为和显微组织[J].航空材料学报,2011,16(2):225.
8 Jia F B, Yi Y P, Huang S Q, et al. Study on rheological behavior and constitutive equation of 7A85 aluminum alloy hot compression[J].Hot Working Technology,2010,39(16):19(in Chinese).
贾逢博,易幼平,黄施全,等.7A85铝合金热压缩流变行为与本构方程研究[J].热加工工艺,2010,39(16):19.
9 Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy[J].Journal of Alloys and Compounds,2012,537(5):338.
10 Wei W, Jiang P, Cao F. High temperature constitutive relation of 6082 aluminum alloy[J].Journal of Plastic Engineering,2013,20(2):100(in Chinese).
韦韡,蒋鹏,曹飞.6082铝合金的高温本构关系[J].塑性工程学报,2013,20(2):100.
11 Zhang H, Jin N P, Chen J H. Hot deformation behavior of Al-Zn-Mg-Zr aluminum alloys during compression at elevated temperature[J].Transactions of Nonferrous Metals Society of China,2011,21(3):437.
12 Liu W S, Guo L W, Ma Y Z, et al. Microstructure and rheological behavior of 2A14 aluminum alloy thermal deformation[J].Chinese Journal of Nonferrous Metals,2013,23(8):2091(in Chinese).
刘文胜,郭伦文,马运柱,等.2A14铝合金热变形的显微组织及流变行为[J].中国有色金属学报,2013,23(8):2091.
13 Ji Hyun Sung, Ji Hoom Kim, Wagoner R H. A plastic constitutive equation incorporating strain-rate,and temperature[J].International Journal of Plasticity,2010,26(12):1746.
14 Cai Yiming,Li Huizhong,Liang Xiaopeng,et al.Thermal deformation behavior for 7039 aluminum alloy at elevated temperature[J].Tran-sactions of Nonferrous Metals Society of China,2008,18(10):1775
15 Jabbari Taleghani M A, Ruiz Navas E M, Salehi M, et al. Hot deformation behavior and flow stress prediction of 7075 aluminum alloy powder compacts during compression at elevated temperatures[J].Materials science and Engineering A,2012,534(1):624.
16 Gourdet S,Montheillet F.A model of continuous dynamic recrystallization[J].Acta Materialia,2003,23(9):2685.
17 Xu X, Yang M, Liang Y L, et al. Research on hot compressive deformation and processing map of 211Z. X heat-resisting high strength aluminium alloy[J].Materials Review B:Research Papers,2016,30(9):143(in Chinese).
徐祥,杨明,梁益龙,等.211Z.X耐热高强韧铝合金热变形行为及加工图研究[J].材料导报:研究篇,2016,30(9):143.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[3] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[4] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[5] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[6] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[7] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[8] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[9] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[10] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[11] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[12] 王云鹏,胡嘉玮,许小云,刘道峰,蒋洪章,王晓勇,颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
[13] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[14] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[15] 陈伟, 邱长军, 闫梦达, 贺沅玮, 张净宜, 齐林森. 添加松香和淀粉对铁基合金粉末激光成形试样组织和力学性能的影响[J]. 材料导报, 2019, 33(11): 1848-1852.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed