Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22120200-6    https://doi.org/10.11896/cldb.22120200
  金属与金属基复合材料 |
超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响
俞伟元*, 董鹏飞, 吴保磊
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Effects of Oxygen/Fuel Ratio on Properties of HVOF Fe-based Amorphous Coatings
YU Weiyuan*, DONG Pengfei, WU Baolei
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 28421KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非晶涂层具有优良的物理和化学性能,在工业中有广泛的应用。以FeCrMoCBSi非晶粉末为喷涂粉末,采用超音速火焰喷涂(HVOF)技术在不同喷涂参数下在Q235钢基板上沉积了铁基非晶涂层。通过X射线衍射仪(XRD)、差示扫描热仪(DSC)、扫描电子显微镜(SEM)、维氏显微硬度计等测试方法,探讨氧燃比对涂层显微组织、微观结构及耐磨性的影响。研究表明,随着喷涂氧燃比的减小,涂层的非晶相含量呈增加趋势。这是因为过量的氧气会降低喷涂过程中颗粒的熔化程度,并使颗粒氧化。涂层的显微硬度和耐磨性随氧燃比的减小而增加。这是因为在较小氧燃比下,颗粒熔化程度增加,与基板间润湿性增加,孔隙率减小。三种铁基非晶涂层相比于Q235钢基板均具有更加优良的耐磨性,有望成为碳钢表面保护和耐磨涂层的候选材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
俞伟元
董鹏飞
吴保磊
关键词:  铁基非晶涂层  氧燃比  显微组织  耐磨性    
Abstract: Amorphous coatings have excellent physical and chemical properties and are widely used in industry. FeCrMoCBSi amorphous powder was used as spraying powder, the Fe-based amorphous coating was deposited on Q235 steel substrate by HVOF under different spraying parameters. The effect of oxygen-fuel ratio on the microstructure and wear resistance of the coatings was investigated by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Vickers microhardness tester. It was found that the amorphous phase content of the coatings tended to increase as the sprayed oxygen-fuel ratio decreased. This is because the excess oxygen reduces the melting of the particles during the spraying process and oxidizes the particles. The microhardness and wear resistance of the coating increased with decreasing oxy-fuel ratios. The reason is that the particle melting degree increases, the wetting ability between the particle and the substrate increases, and the porosity decreases at a smaller oxygen-fuel ratio. All three iron-based amorphous coatings have more excellent wear resistance compared to Q235 steel substrate and are expected to be candidates for surface protection and wear resistant coatings on carbon steel.
Key words:  Fe-based amorphous coating    oxygen fuel ratio    microstructure    wear resistance
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TG174.4  
通讯作者:  *俞伟元,兰州理工大学材料科学与工程学院教授、博士研究生导师。1995年甘肃工业大学焊接工艺及设备专业本科毕业,2008年6月毕业于兰州理工大学材料加工专业并获工学博士学位。2013年10月被评为教授,2015年受聘为博士研究生导师。2012年6月起任兰州理工大学材料学院焊接技术与工程系副主任、系党支部委员。主要从事先进钎焊技术、表面工程等领域的研究工作,发表学术论文60余篇,其中SCI、EI、ISTP收录20余篇。weiyuanyu2018@163.com   
引用本文:    
俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
YU Weiyuan, DONG Pengfei, WU Baolei. Effects of Oxygen/Fuel Ratio on Properties of HVOF Fe-based Amorphous Coatings. Materials Reports, 2024, 38(12): 22120200-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120200  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22120200
1 Klement W, Willens R H, Duwez P O L. Nature, 1960, 187(4740), 869.
2 Sun B A, Wang W H. Progress in Materials Science, 2015, 74, 211.
3 Cheng Y T, Johnson W L. Science, 1987, 235(4792), 997.
4 Shi Z, Li R, Li X, et al. Materials Science and Engineering:A, 2019, 766, 138385.
5 Zhang C, Zhou H, Liu L. Acta Materialia, 2014, 72, 239.
6 Lu Y, Huang Y, Lu X, et al. Materials Letters, 2015, 143, 191.
7 Qiao L, Wu Y, Hong S, et al. Ultrasonics Sonochemistry, 2017, 39, 39.
8 Zhou Z, Wang L, Wang F C, et al. Surface and Coatings Technology, 2009, 204(5), 563.
9 Zhang H, Hu Y, Hou G, et al. Journal of Non-crystalline Solids, 2014, 406, 37.
10 Wang Y, Jiang S L, Zheng Y G, et al. Materials and Corrosion, 2013, 64(9), 801.
11 Qiao L, Wu Y, Hong S, et al. Surface and Coatings Technology, 2019, 366, 296.
12 Vignesh S, Shanmugam K, Balasubramanian V, et al. Defence Technology, 2017, 13(2), 101.
13 Picas J A, Ruperez E, Punset M, et al. Surface and Coatings Technology, 2013, 225, 47.
14 Ghassemi H, Baek S W, Khan Q S. Combustion Science and Technology, 2006, 178(9), 1669.
15 Liu G, An Y, Guo Z, et al. Applied Surface Science, 2012, 258(14), 5380.
16 Picas J A, Punset M, Baile M T, et al. Plasma Processes & Polymers, 2010, 6(S1), S948.
17 Stern K H. Metallurgical and ceramic protective coatings, Springer Netherlands, UK, 1996. pp.30.
18 Matikainen V, Koivuluoto H, Vuoristo P. Wear, 2020, 446, 203188.
19 Mahade S, Aranke O, Björklund S, et al. Surface and Coatings Technology, 2021, 409, 126953.
[1] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[2] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[3] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[4] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[5] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[6] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[7] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[8] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[9] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[10] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[11] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[12] 陈晨, 张亮, 王曦, 李木兰. Zn-Al系钎焊材料的研究进展[J]. 材料导报, 2023, 37(22): 22010081-13.
[13] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[14] 杜伟, 强军锋, 余竹焕, 高炜, 阎亚雯, 王晓慧, 刘旭亮. 电子封装用纳米复合焊膏的研究进展[J]. 材料导报, 2023, 37(19): 22010113-11.
[15] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed