Abstract: Cu is widely used in electronics, machinery and other fields because of its excellent mechanical properties and ductility. Nevertheless, as a worldwide scarce resource, especially in China, we are dependent on imports to a large extent. In order to reduce the cost of manufactu-ring, it is finding other metals to replace Cu that has become a hot research trend. Fortunately, Al resources are abundant in China, with which the weight and cost of components can be significantly reduced compared with those of Cu. However, due to the large difference in physical properties between them, the residual stress is easy to be generated at the interface, which affects the reliability of the connector. Additionally, the temperature of traditional welding method is relatively high, which easily leads to the softening and deformation near the Al side. Quite a few industries are faced with the problem of Al connection difficulty. Therefore, researchers have noticed a kind of filler metal with great potential for application —— Zn-Al solder. The melting temperature can be controlled by changing the Al content, which is more flexible to meet the welding requirements under different circumstances, and quite suitable for the connection of Cu/Al and other metals. In this paper, the research progress and development trend of Zn-Al filler metal alloying are reviewed. The existing research results are analyzed and summarized from the aspects like microstructure and mechanical properties. In the meanwhile, the existing issues are pointed out, and the future research work is anatomized and prospected. It is expected that Zn-Al filler metal can solve the problems of Cu/Al connection as soon as possible, so as to alleviate the shor-tage of Cu resources and reduce production cost.
1 Zhang Q Y, Zhuang H S. Brazing and soldering manual, China Machine Press, China, 2018 (in Chinese). 张启运, 庄鸿寿. 钎焊手册, 机械工业出版社, 2018. 2 Ji F. Effect of Ti and Ce on the properties of Zn-22Al filler metal as well as the Cu/Al brazed joint. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2013 (in Chinese). 姬峰. Ti、Ce对Zn-22Al钎料及Cu/Al钎焊接头性能影响的研究. 博士学位论文, 南京航空航天大学, 2013. 3 Peng Z H, Yu X F, Wei J H. Journal of Central South University (Science and Technology), 1998, 29(3), 259 (in Chinese). 彭智辉, 余旭凡, 韦家弘. 中南大学学报(自然科学版), 1998, 29(3), 259. 4 Kong C. Effect of adding Ag or Cu on properties of Zn-Al brazing filler metal. Ph. D. Thesis, Hefei University of Technology, China, 2014 (in Chinese). 孔聪. Ag、Cu的添加对Zn-Al系钎料性能的影响. 博士学位论文, 合肥工业大学, 2014. 5 Schoer H, Schultze W. U. S. patent, US3807033, 1974. 6 Zhang M. Effect and mechanism of Al and Ag on Zn-Al filler metal. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2012 (in Chinese). 张满. Al、Ag对Zn-Al钎料性能的影响及相关机理研究. 博士学位论文, 南京航空航天大学, 2012. 7 Gao Q. Latest metallographic Atlas of nonferrous metals, Beijing: Metallurgical Industry Press, China, 2005 (in Chinese). 高强. 最新有色金属金相图谱大全,中国冶金工业出版社, 2005. 8 Mcgurran B, Nicholas M G. Journal of Materials Science, 1984, 19(8), 2713. 9 Bobzin K, Zhao L, Schlaefer T, et al. Frontiers of Mechanical Engineering in China, 2010, 5(3), 256. 10 Shin S Y, Ko M W, Cho M W, et al. Journal of Materials Science Letters, 2002, 21(12), 903. 11 Han X P, Xue S B, Gu L Y, et al. Transactions of the China Welding Institution, 2008, 29(2), 45 (in Chinese). 韩宪鹏, 薛松柏, 顾立勇, 等. 焊接学报, 2008, 29(2), 45. 12 Yan X Q. Analysis on embrittlement mechanism of ZnAl15 solder. Master's Thesis, Zhengzhou University, China, 2013 (in Chinese). 颜新奇. ZnAl15钎料脆化机理研究, 硕士学位论文, 郑州大学, 2013. 13 Dong B W, Dong X, Bao L, et al. Welding & Joining, 2019(5), 7 (in Chinese). 董博文, 董显, 鲍丽, 等. 焊接, 2019(5), 7. 14 Feng Jicai. Acta Aeronautica et Astronautica Sinica, 2022, 43(2), 6 (in Chinese). 冯吉才. 航空学报, 2022, 43(2), 6. 15 Zhang L, Tu K N, Sun L, et al. Journal of Central South University (Science and Technology), 2015, 46(1), 49 (in Chinese). 张亮, Tu K N, 孙磊, 等. 中南大学学报(自然科学版), 2015, 46(1), 49. 16 Zhao D. Effect of storage time and environment on microstructure and properties of Zn-Al filler metal. Master's Thesis, Zhengzhou University, China, 2011 (in Chinese). 赵丹. 储存时间和环境对锌铝钎料显微组织和力学性能的影响, 硕士论文, 郑州大学, 2011. 17 Zhang M, Xia Z Q, Zhang L C, et al. Transactions of the China Welding Institution, 2015, 36(8), 63 (in Chinese). 张满, 夏之穹, 张临财, 等. 焊接学报, 2015, 36(8), 63. 18 Dai W, Xue S B, Ji F, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(1), 30. 19 Bazhenov V E, Pashkov I N, Pikunov M V, et al. Materials Science and Technology, 2016, 32(8), 752. 20 Michal Prach, Roman Koleňák. Science Direct, 2015, 100, 1370. 21 Fan G X. Influence of Sn and Cu addition on microstructure and properties of Zn-10Al filler metal. Master's Thesis, Zhengzhou University, China, 2015 (in Chinese). 范桂霞. Sn、Cu元素对Zn-10A1钎料合金组织及性能的影响, 硕士学位论文, 郑州大学, 2015. 22 Kim S J, Kim K S, Kim S S, et al. Materials Transactions, 2008, 49(7), 1531. 23 Fang H Y, Feng J C. Interface behavior during material bonding, Harbin Institute of Technology Press, China, 2005 (in Chinese). 方洪渊, 冯吉才. 材料连接过程中的界面行为, 哈尔滨工业大学出版社, 2005. 24 Li Y G, Fan G X, Zhao K X, et al. Journal of Zhengzhou University (Engineering Science), 2015, 36(5), 11 (in Chinese). 李永刚, 范桂霞, 赵开新, 等. 郑州大学学报(工学版), 2015, 36(5), 11. 25 Liu S Y, Zhang D D. Journal of Materials Science:Materials in Electronics, 2018, 29, 17137. 26 Wu Q L, Li Y J, Liu S X, et al. Materials Research Express, 2019, 6, 066556. 27 Guo W B, Luan Y M, He J S, et al. Materials & Design, 2017, 125, 85. 28 Yang J L, Xue S B, Xue P, et al. Transactions of the China Welding nstitution, 2016, 37(12), 61 (in Chinese). 杨金龙, 薛松柏, 薛鹏, 等. 焊接学报, 2016, 37(12), 61. 29 Liu Y. Optimization of microstructure and properties and its relative basic research of Zinc-aluminum alloy. Ph. D. Thesis, Central South University, China, 2013 (in Chinese). 刘洋. 锌铝合金的组织性能优化及相关基础研究. 博士学位论文, 中南大学, 2013. 30 Liu S F, Huang S Y, Xu P. Acta Metallurgica Sinica, 2006, 42(4), 443 (in Chinese). 刘生发, 黄尚宇, 徐萍. 金属学报, 2006, 42(4), 443. 31 Wang B, Liu H, Xue S B, et al. Transactions of the China Welding Institution, 2013, 34(11), 61(in Chinese). 王博, 刘晗, 薛松柏, 等. 焊接学报, 2013, 34(11), 61. 32 Zhang L, Xue S B, Gao L L, et al. Journal of Materials Science:Materials in Electronics, 2009, 20(8), 685 33 Pang S P, Shi Y B, Li J, et al. Journal of the Chinese Rare Earths Society, 2000, 18(4), 344 (in Chinese). 庞绍平, 石云宝, 李军, 等. 中国稀土学报, 2000, 18(4), 344. 34 Pang S P, Huang Y F, Shi Y B, et al. Journal of the Chinese Rare Earths Society, 2001, 11(1), 68 (in Chinese). 庞绍平, 黄元峰, 石云宝, 等. 中国有色金属学报, 2001, 11(1), 68. 35 Liu G L, Li R D. Chinese Journal of Chemical Physics, 2004, 17(5), 649 (in Chinese). 刘贵立, 李荣德. 化学物理学报, 2004, 17(5), 649. 36 Lu Y H, Zhao P, Shen H X. The Chinese Journal of Nonferrous Metals, 2005, 15(12), 1960 (in Chinese). 逯允海, 赵品, 沈焕祥. 中国有色金属学报, 2005, 15(12), 1960. 37 Li Y Y, Leo-Ngai T W, Wei X, et al. Wear, 1996, 198(1-2), 129. 38 Yang J L, Xue S B, Ji F, et al. Transactions of the China Welding Institution, 2012, 33(11), 93 (in Chinese). 杨金龙, 薛松柏, 姬峰, 等. 焊接学报, 2012, 33(11), 93. 39 Yang C G, Guo X M, Xing L. Transactions of the China Welding Institution, 2009, 30(9), 41 (in Chinese). 杨成刚, 国旭明, 邢丽. 焊接学报, 2009, 30(9), 41. 40 Wang J, Wang X, Hao T, et al. China Foundry, 2011, 8(4), 397. 41 Zhang D Y. Effects of high mechanical pressure and minor Ti on the solidification of the Zn-Al alloys. Master's Thesis. Shenyang University of Technology, China, 2012 (in Chinese). 张得宇. 高机械压力和Ti对锌铝二元合金凝固的影响, 硕士学位论文, 沈阳工业大学, 2012. 42 Katsuaki Suganuma. Introduction to lead-free soldering, Science Press, China, 2017 (in Chinese). 菅沼克昭. 无铅软钎焊技术基础, 科学出版社, 2017. 43 Uzun H, Donne C D, Argagnotto A, et al. Materials & Design, 2005, 26(1), 41. 44 Han W F, Lin Q S, Zhang Q Y, et al. Journal of Chinese Society of Corrosion and Protection, 1982, 2(2), 59 (in Chinese). 韩万方, 林千善, 张启运, 等. 中国腐蚀与防护学报, 1982, 2(2), 59. 45 Song J M, Lan G F, Lui T S, et al. Scripta Materialia, 2003, 48(8), 1047. 46 Lin S B, Song J L, Yang C L, et al. Acta Metallurgica Sinica, 2009, 45(10), 1211 (in Chinese). 林三宝, 宋建岭, 杨春利, 等. 金属学报, 2009, 45(10), 1211. 47 Ji F, Xue S B, Lou J Y, et al. Transactions of the China Welding Institution, 2012,33(5), 21 (in Chinese). 姬峰, 薛松柏, 娄继源, 等. 焊接学报, 2012, 33(5), 21. 48 Zhang M. Crystals, 2020, 10(4), 248. 49 Lai Z W, Pan C, Du H Q, et al. Science and Technology of Welding and Joining, 2018, 23(1), 19. 50 Liu L M, Zhao L M, Wu Z H. Materials Science and Technology, 2013, 27(9), 1372. 51 Gancarz T, Pstruś J, Fima P, et al. Journal of Alloys and Compounds, 2014, 582, 313. 52 Wang J Y, Lin C F, Chen C M. Scripta Materialia, 2011, 64(7), 633. 53 Lee J, Kim K, Suganuma K, et al. Materials Transactions, 2005, 46(11), 2413. 54 Mayappan R, Ahmad Z A. Intermetallics, 2010, 18(4), 730. 55 Liu N S, Lin K L. Scripta Materialia, 2006, 54(2), 219. 56 Hu J, Hu A, Li M, et al. Materials Characterization, 2010, 61(3), 355. 57 Huang Y C, Chen S W. Journal of Materials Research, 2010, 25(12), 2430. 58 Lai R S, Lin K L, Salam B. Journal of Electronic Materials, 2009, 38(1), 88. 59 Xiao Y, Ji H J, Li M Y, et al. Material & Design, 2013, 52, 740. 60 Vaynman S, Fine M. Journal of Electronic Materials, 2000, 29(10), 1160. 61 Chinnam R, Fauteux C, Neuenschwander J, et al. Acta Materialia, 2011, 59(4), 1474. 62 Shchukin D G, Skorb E, Belova V, et al. Advanced Materials, 2011, 23, 1922. 63 Chen X G, Yan J C, Gao F, et al. Ultrasonics Sonochemistry, 2013, 20(1), 144. 64 Koleňák R, Kostolný I, Jaromir Drapala, et al. Metal, 2021, 11(1), 27. 65 Yan Y F, Li C J, Ren X F, et al. Transactions of the China Welding Institution, 2020, 41(4), 51 (in Chinese). 闫焉服, 李超君, 任晓飞, 等. 焊接学报, 2020, 41(4), 51. 66 Zhang L, Han J G, Guo Y H, et al. IEEE Transactions on Electron Devices, 2012, 59(12), 3269. 67 Ma X, He P. Lead-free soldering technology in electronic assembly, Harbin Institute of Technology Press, China, 2006 (in Chinese). 马鑫, 何鹏. 电子组装中的无铅软钎焊技术, 哈尔滨工业大学出版社, 2006. 68 Eustathopoulos N. Acta Materialia, 1998, 46(7), 2319. 69 Chen W X, Xue S B, Wang H, et al. Transactions of the China Welding Institution, 2009, 30(6), 75 (in Chinese). 陈文学, 薛松柏, 王慧, 等. 焊接学报, 2009, 30(6), 75. 70 Liu Z L, Yang K Z, Yi D F. Hot Working Technology, 2009, 38(11), 123 (in Chinese). 刘正林, 杨凯珍, 尹登峰. 热加工工艺, 2009, 38(11), 123. 71 Zhang M, Wang P F, Zhang L C, et al. Transactions of the China Wel-ding Institution, 2013, 34(10), 87 (in Chinese). 张满, 王鹏飞, 张临财, 等. 焊接学报, 2013, 34(10), 87. 72 Xu Z W, Yan J C, Wang C, et al. Materials Chemistry and Physics, 2008, 112(3), 831. 73 Zhang D D, Liu S Y, Chen Z, et al. Welding & Joining, 2017(4), 21 (in Chinese). 张冬冬, 刘树英, 陈泽, 等. 焊接, 2017(4), 21. 74 Kong C, Sun Y C, Li X F, et al. Welding & Joining, 2014(5), 36 (in Chinese). 孔聪, 孙禹冲, 李先芬, 等. 焊接, 2014(5), 36. 75 Liu F M, Yang C Z, Liu S T, et al. Hot Working Technology, 2009, 38(21), 32 (in Chinese). 刘凤美, 杨凯珍, 刘师田, 等. 热加工工艺, 2009, 38(21), 32. 76 Chen X, Hu A M, Li M, et al. Journal of Alloy and Compounds, 2008, 460(1-2), 478. 77 Meyers M A, Chawla K K. Mechanical behavior of material, Cambridge University Press, Cambridge, UK, 2009. 78 Hasan M M, Sharif A, Gafur M A. Journal of Materials Science:Materials in Electronics, 2020, 31, 1691. 79 Movahedi M, Kokabi A H, Hosseini H R M. Materials Characterization, 2009, 60(5), 441. 80 Yang H, Huang J H, Chen S M, et al. Acta Metallurgica Sinica, 2015, 51(3), 364 (in Chinese). 羊浩, 黄继华, 陈树海, 等. 金属学报, 2015, 51(3), 364. 81 Niu Z W, Ye Z, Huang J H, et al. Materials Characterization, 2018, 138, 78. 82 Fu Y G, Wang L, Xiao Y, et al. Electronics Process Technology, 2014, 35(6), 326 (in Chinese). 符永高, 王玲, 肖勇, 等. 电子工艺技术, 2014, 35(6), 326. 83 Yu G Y, Sun H D, Chen S H, et al. Journal of Materials Engineering and Performance, 2022, 31, 2410. 84 Huang J L, Long W M. Welding & Joining, 2011(3), 57 (in Chinese). 黄俊兰, 龙伟民. 焊接, 2011(3), 57. 85 Wang H L, Tian Z L, Li M E. Materials Research and Application, 2011, 5(2), 92 (in Chinese). 王洪礼, 田战玲, 李明娥. 材料研究与应用, 2011, 5(2), 92. 86 Pang S P, Shi Y B, Li J, et al. Journal of Rare Earths, 2000, 18(4), 344. 87 Tomasz Gancarz, Katarzyna Berent, Wojciech Skuza, et al. Metallurgical and Materials Transactions A, 2018, 49(7), 2684. 88 Xiao B, Wang D P, Cheng F J, et al. Material & Design, 2016, 90, 610. 89 Xiao Y, Ji H J, Li M Y, et al. Material & Design, 2013, 47, 717. 90 Bao J J, Gao Z G, Li C, et al. Materials for Mechanical Engineering, 2006, 30(12), 40 (in Chinese). 鲍俊娟, 高志广, 李川, 等. 机械工程材料, 2006, 30(12), 40. 91 Toru Nagaoka, Yoshiaki Morisada, Masao Fukusumi, et al. Journal of Materials Processing Technology, 2011, 211(9), 1534. 92 Fernandus M J, Senthilkumar T, Balasubramanian V. Transactions of the Indian Institute of Metals, 2011, 32(3), 1651. 93 Wang Z, Wang H, Liu L. Material & Design, 2012, 39, 14. 94 Liu L, Tan J, Liu X. Materials Letters, 2007, 61(11-12), 2373. 95 Hao X W, Nie H H, Ye Z, et al. Materials Science and Engineering A, 2019, 740-741, 218. 96 Long W M, Zhang L, Huang J L, et al. Materials Science & Technology, 2009, 17(1), 200 (in Chinese). 龙伟民, 张雷, 黄俊兰, 等. 材料科学与工艺, 2009, 17(1), 200. 97 Sun L C, Tian R Z. Journal of Central South University (Science and Technology), 1998, 19(2), 171 (in Chinese). 孙连超, 田荣璋. 中南大学学报(自然科学版), 1988, 19(2), 171. 98 Ye Z, Huang J H, Yang W J, et al. Welding in the World, 2020, 64, 1023. 99 Huang J L, Long W M, Zhong S J. Journal of Mechanical Science and Technology, 2020, 34(2), 711. 100 Ding B Z, Sun Y C, Wang P P. Silicon Valley, 2014(9), 48 (in Chinese). 丁宝珠, 孙禹冲, 王盼盼. 硅谷, 2014(9), 48. 101 Ye Z, Huang J H, Yang H, et al. Journal of Materials Research and Technology, 2019, 6(8), 5171. 102 Yu R Z, Li Y J, Liu S X, et al. Materials Research Express, 2019, 6, 026550. 103 Yu J Q, Chen Y. Welding & Joining, 1997(8), 11 (in Chinese). 虞觉奇, 陈永. 焊接, 1997(8), 11.