Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22010081-13    https://doi.org/10.11896/cldb.22010081
  金属与金属基复合材料 |
Zn-Al系钎焊材料的研究进展
陈晨, 张亮*, 王曦, 李木兰
江苏师范大学机电工程学院,江苏 徐州 221116
Research Progress of Zn-Al Brazing Materials
CHEN Chen, ZHANG Liang*, WANG Xi, LI Mulan
School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
下载:  全 文 ( PDF ) ( 25901KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Cu因其优良的力学性能、延展性能等而被广泛用于电子、机械等领域。但Cu同样作为世界性稀缺资源,尤其是我国十分依赖进口。为降低制造成本,寻找其他金属代替Cu成为当今的研究热潮。我国Al资源较为丰富,以Al代Cu能显著减少构件质量和成本消耗。然而,由于二者物理性能差异较大,在结合界面处易产生较大残余应力,影响连接件的可靠性。而传统的焊接方法温度较高,易导致Al侧软化和变形。诸多行业面临着Al连接困难的问题。因此,研究者们注意到一种具有很大应用潜能的钎料——Zn-Al钎料,通过改变Al含量,能控制其熔化温度,较为灵活地满足不同情况下的焊接需求,十分契合Cu/Al等金属的连接。本文针对Zn-Al钎料的研究现状,综合评述了其合金化方面的研究进展及发展趋势,主要从显微组织、力学性能等方面对现有研究成果进行分析总结,同时指出所存在的问题,并针对今后研究工作进行分析和展望,期望Zn-Al钎料能早日解决Cu/Al等连接的问题,以达到缓解Cu资源紧张、节省生产成本的目的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈晨
张亮
王曦
李木兰
关键词:  Cu资源稀缺  Zn-Al钎料  金属连接  显微组织  力学性能    
Abstract: Cu is widely used in electronics, machinery and other fields because of its excellent mechanical properties and ductility. Nevertheless, as a worldwide scarce resource, especially in China, we are dependent on imports to a large extent. In order to reduce the cost of manufactu-ring, it is finding other metals to replace Cu that has become a hot research trend. Fortunately, Al resources are abundant in China, with which the weight and cost of components can be significantly reduced compared with those of Cu. However, due to the large difference in physical properties between them, the residual stress is easy to be generated at the interface, which affects the reliability of the connector. Additionally, the temperature of traditional welding method is relatively high, which easily leads to the softening and deformation near the Al side. Quite a few industries are faced with the problem of Al connection difficulty. Therefore, researchers have noticed a kind of filler metal with great potential for application —— Zn-Al solder. The melting temperature can be controlled by changing the Al content, which is more flexible to meet the welding requirements under different circumstances, and quite suitable for the connection of Cu/Al and other metals. In this paper, the research progress and development trend of Zn-Al filler metal alloying are reviewed. The existing research results are analyzed and summarized from the aspects like microstructure and mechanical properties. In the meanwhile, the existing issues are pointed out, and the future research work is anatomized and prospected. It is expected that Zn-Al filler metal can solve the problems of Cu/Al connection as soon as possible, so as to alleviate the shor-tage of Cu resources and reduce production cost.
Key words:  scarce Cu resource    Zn-Al solder    metal connection    microstructure    mechanical property
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TG425  
基金资助: 江苏省自然科学基金(BK20211351)
通讯作者:  * 张亮,江苏师范大学机电工程学院教授、硕士研究生导师。2006年7月毕业于南昌航空大学,获材料成型与控制工程学士学位,2011年5月毕业于南京航空航天大学,获材料加工工程专业博士学位。2013年4月至2014年7月作为公派访问学者至美国加州大学洛杉矶分校电子薄膜实验室从事访问研修。主要从事电子封装技术、3D封装芯片堆叠、无铅钎料及互连技术、焊点可靠性、钎焊材料与技术等领域的研究,发表论文100余篇。zhangliang@jsnu.edu.cn   
作者简介:  陈晨,2017年6月毕业于江苏海洋大学,获得工学学士学位。现为江苏师范大学机电工程学院硕士研究生,在张亮教授的指导下进行研究。目前主要研究领域为无铅钎料及互连技术以及钎焊材料与技术。
引用本文:    
陈晨, 张亮, 王曦, 李木兰. Zn-Al系钎焊材料的研究进展[J]. 材料导报, 2023, 37(22): 22010081-13.
CHEN Chen, ZHANG Liang, WANG Xi, LI Mulan. Research Progress of Zn-Al Brazing Materials. Materials Reports, 2023, 37(22): 22010081-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010081  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22010081
1 Zhang Q Y, Zhuang H S. Brazing and soldering manual, China Machine Press, China, 2018 (in Chinese).
张启运, 庄鸿寿. 钎焊手册, 机械工业出版社, 2018.
2 Ji F. Effect of Ti and Ce on the properties of Zn-22Al filler metal as well as the Cu/Al brazed joint. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2013 (in Chinese).
姬峰. Ti、Ce对Zn-22Al钎料及Cu/Al钎焊接头性能影响的研究. 博士学位论文, 南京航空航天大学, 2013.
3 Peng Z H, Yu X F, Wei J H. Journal of Central South University (Science and Technology), 1998, 29(3), 259 (in Chinese).
彭智辉, 余旭凡, 韦家弘. 中南大学学报(自然科学版), 1998, 29(3), 259.
4 Kong C. Effect of adding Ag or Cu on properties of Zn-Al brazing filler metal. Ph. D. Thesis, Hefei University of Technology, China, 2014 (in Chinese).
孔聪. Ag、Cu的添加对Zn-Al系钎料性能的影响. 博士学位论文, 合肥工业大学, 2014.
5 Schoer H, Schultze W. U. S. patent, US3807033, 1974.
6 Zhang M. Effect and mechanism of Al and Ag on Zn-Al filler metal. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2012 (in Chinese).
张满. Al、Ag对Zn-Al钎料性能的影响及相关机理研究. 博士学位论文, 南京航空航天大学, 2012.
7 Gao Q. Latest metallographic Atlas of nonferrous metals, Beijing: Metallurgical Industry Press, China, 2005 (in Chinese).
高强. 最新有色金属金相图谱大全,中国冶金工业出版社, 2005.
8 Mcgurran B, Nicholas M G. Journal of Materials Science, 1984, 19(8), 2713.
9 Bobzin K, Zhao L, Schlaefer T, et al. Frontiers of Mechanical Engineering in China, 2010, 5(3), 256.
10 Shin S Y, Ko M W, Cho M W, et al. Journal of Materials Science Letters, 2002, 21(12), 903.
11 Han X P, Xue S B, Gu L Y, et al. Transactions of the China Welding Institution, 2008, 29(2), 45 (in Chinese).
韩宪鹏, 薛松柏, 顾立勇, 等. 焊接学报, 2008, 29(2), 45.
12 Yan X Q. Analysis on embrittlement mechanism of ZnAl15 solder. Master's Thesis, Zhengzhou University, China, 2013 (in Chinese).
颜新奇. ZnAl15钎料脆化机理研究, 硕士学位论文, 郑州大学, 2013.
13 Dong B W, Dong X, Bao L, et al. Welding & Joining, 2019(5), 7 (in Chinese).
董博文, 董显, 鲍丽, 等. 焊接, 2019(5), 7.
14 Feng Jicai. Acta Aeronautica et Astronautica Sinica, 2022, 43(2), 6 (in Chinese).
冯吉才. 航空学报, 2022, 43(2), 6.
15 Zhang L, Tu K N, Sun L, et al. Journal of Central South University (Science and Technology), 2015, 46(1), 49 (in Chinese).
张亮, Tu K N, 孙磊, 等. 中南大学学报(自然科学版), 2015, 46(1), 49.
16 Zhao D. Effect of storage time and environment on microstructure and properties of Zn-Al filler metal. Master's Thesis, Zhengzhou University, China, 2011 (in Chinese).
赵丹. 储存时间和环境对锌铝钎料显微组织和力学性能的影响, 硕士论文, 郑州大学, 2011.
17 Zhang M, Xia Z Q, Zhang L C, et al. Transactions of the China Welding Institution, 2015, 36(8), 63 (in Chinese).
张满, 夏之穹, 张临财, 等. 焊接学报, 2015, 36(8), 63.
18 Dai W, Xue S B, Ji F, et al. Transactions of Nonferrous Metals Society of China, 2012, 22(1), 30.
19 Bazhenov V E, Pashkov I N, Pikunov M V, et al. Materials Science and Technology, 2016, 32(8), 752.
20 Michal Prach, Roman Koleňák. Science Direct, 2015, 100, 1370.
21 Fan G X. Influence of Sn and Cu addition on microstructure and properties of Zn-10Al filler metal. Master's Thesis, Zhengzhou University, China, 2015 (in Chinese).
范桂霞. Sn、Cu元素对Zn-10A1钎料合金组织及性能的影响, 硕士学位论文, 郑州大学, 2015.
22 Kim S J, Kim K S, Kim S S, et al. Materials Transactions, 2008, 49(7), 1531.
23 Fang H Y, Feng J C. Interface behavior during material bonding, Harbin Institute of Technology Press, China, 2005 (in Chinese).
方洪渊, 冯吉才. 材料连接过程中的界面行为, 哈尔滨工业大学出版社, 2005.
24 Li Y G, Fan G X, Zhao K X, et al. Journal of Zhengzhou University (Engineering Science), 2015, 36(5), 11 (in Chinese).
李永刚, 范桂霞, 赵开新, 等. 郑州大学学报(工学版), 2015, 36(5), 11.
25 Liu S Y, Zhang D D. Journal of Materials Science:Materials in Electronics, 2018, 29, 17137.
26 Wu Q L, Li Y J, Liu S X, et al. Materials Research Express, 2019, 6, 066556.
27 Guo W B, Luan Y M, He J S, et al. Materials & Design, 2017, 125, 85.
28 Yang J L, Xue S B, Xue P, et al. Transactions of the China Welding nstitution, 2016, 37(12), 61 (in Chinese).
杨金龙, 薛松柏, 薛鹏, 等. 焊接学报, 2016, 37(12), 61.
29 Liu Y. Optimization of microstructure and properties and its relative basic research of Zinc-aluminum alloy. Ph. D. Thesis, Central South University, China, 2013 (in Chinese).
刘洋. 锌铝合金的组织性能优化及相关基础研究. 博士学位论文, 中南大学, 2013.
30 Liu S F, Huang S Y, Xu P. Acta Metallurgica Sinica, 2006, 42(4), 443 (in Chinese).
刘生发, 黄尚宇, 徐萍. 金属学报, 2006, 42(4), 443.
31 Wang B, Liu H, Xue S B, et al. Transactions of the China Welding Institution, 2013, 34(11), 61(in Chinese).
王博, 刘晗, 薛松柏, 等. 焊接学报, 2013, 34(11), 61.
32 Zhang L, Xue S B, Gao L L, et al. Journal of Materials Science:Materials in Electronics, 2009, 20(8), 685
33 Pang S P, Shi Y B, Li J, et al. Journal of the Chinese Rare Earths Society, 2000, 18(4), 344 (in Chinese).
庞绍平, 石云宝, 李军, 等. 中国稀土学报, 2000, 18(4), 344.
34 Pang S P, Huang Y F, Shi Y B, et al. Journal of the Chinese Rare Earths Society, 2001, 11(1), 68 (in Chinese).
庞绍平, 黄元峰, 石云宝, 等. 中国有色金属学报, 2001, 11(1), 68.
35 Liu G L, Li R D. Chinese Journal of Chemical Physics, 2004, 17(5), 649 (in Chinese).
刘贵立, 李荣德. 化学物理学报, 2004, 17(5), 649.
36 Lu Y H, Zhao P, Shen H X. The Chinese Journal of Nonferrous Metals, 2005, 15(12), 1960 (in Chinese).
逯允海, 赵品, 沈焕祥. 中国有色金属学报, 2005, 15(12), 1960.
37 Li Y Y, Leo-Ngai T W, Wei X, et al. Wear, 1996, 198(1-2), 129.
38 Yang J L, Xue S B, Ji F, et al. Transactions of the China Welding Institution, 2012, 33(11), 93 (in Chinese).
杨金龙, 薛松柏, 姬峰, 等. 焊接学报, 2012, 33(11), 93.
39 Yang C G, Guo X M, Xing L. Transactions of the China Welding Institution, 2009, 30(9), 41 (in Chinese).
杨成刚, 国旭明, 邢丽. 焊接学报, 2009, 30(9), 41.
40 Wang J, Wang X, Hao T, et al. China Foundry, 2011, 8(4), 397.
41 Zhang D Y. Effects of high mechanical pressure and minor Ti on the solidification of the Zn-Al alloys. Master's Thesis. Shenyang University of Technology, China, 2012 (in Chinese).
张得宇. 高机械压力和Ti对锌铝二元合金凝固的影响, 硕士学位论文, 沈阳工业大学, 2012.
42 Katsuaki Suganuma. Introduction to lead-free soldering, Science Press, China, 2017 (in Chinese).
菅沼克昭. 无铅软钎焊技术基础, 科学出版社, 2017.
43 Uzun H, Donne C D, Argagnotto A, et al. Materials & Design, 2005, 26(1), 41.
44 Han W F, Lin Q S, Zhang Q Y, et al. Journal of Chinese Society of Corrosion and Protection, 1982, 2(2), 59 (in Chinese).
韩万方, 林千善, 张启运, 等. 中国腐蚀与防护学报, 1982, 2(2), 59.
45 Song J M, Lan G F, Lui T S, et al. Scripta Materialia, 2003, 48(8), 1047.
46 Lin S B, Song J L, Yang C L, et al. Acta Metallurgica Sinica, 2009, 45(10), 1211 (in Chinese).
林三宝, 宋建岭, 杨春利, 等. 金属学报, 2009, 45(10), 1211.
47 Ji F, Xue S B, Lou J Y, et al. Transactions of the China Welding Institution, 2012,33(5), 21 (in Chinese).
姬峰, 薛松柏, 娄继源, 等. 焊接学报, 2012, 33(5), 21.
48 Zhang M. Crystals, 2020, 10(4), 248.
49 Lai Z W, Pan C, Du H Q, et al. Science and Technology of Welding and Joining, 2018, 23(1), 19.
50 Liu L M, Zhao L M, Wu Z H. Materials Science and Technology, 2013, 27(9), 1372.
51 Gancarz T, Pstruś J, Fima P, et al. Journal of Alloys and Compounds, 2014, 582, 313.
52 Wang J Y, Lin C F, Chen C M. Scripta Materialia, 2011, 64(7), 633.
53 Lee J, Kim K, Suganuma K, et al. Materials Transactions, 2005, 46(11), 2413.
54 Mayappan R, Ahmad Z A. Intermetallics, 2010, 18(4), 730.
55 Liu N S, Lin K L. Scripta Materialia, 2006, 54(2), 219.
56 Hu J, Hu A, Li M, et al. Materials Characterization, 2010, 61(3), 355.
57 Huang Y C, Chen S W. Journal of Materials Research, 2010, 25(12), 2430.
58 Lai R S, Lin K L, Salam B. Journal of Electronic Materials, 2009, 38(1), 88.
59 Xiao Y, Ji H J, Li M Y, et al. Material & Design, 2013, 52, 740.
60 Vaynman S, Fine M. Journal of Electronic Materials, 2000, 29(10), 1160.
61 Chinnam R, Fauteux C, Neuenschwander J, et al. Acta Materialia, 2011, 59(4), 1474.
62 Shchukin D G, Skorb E, Belova V, et al. Advanced Materials, 2011, 23, 1922.
63 Chen X G, Yan J C, Gao F, et al. Ultrasonics Sonochemistry, 2013, 20(1), 144.
64 Koleňák R, Kostolný I, Jaromir Drapala, et al. Metal, 2021, 11(1), 27.
65 Yan Y F, Li C J, Ren X F, et al. Transactions of the China Welding Institution, 2020, 41(4), 51 (in Chinese).
闫焉服, 李超君, 任晓飞, 等. 焊接学报, 2020, 41(4), 51.
66 Zhang L, Han J G, Guo Y H, et al. IEEE Transactions on Electron Devices, 2012, 59(12), 3269.
67 Ma X, He P. Lead-free soldering technology in electronic assembly, Harbin Institute of Technology Press, China, 2006 (in Chinese).
马鑫, 何鹏. 电子组装中的无铅软钎焊技术, 哈尔滨工业大学出版社, 2006.
68 Eustathopoulos N. Acta Materialia, 1998, 46(7), 2319.
69 Chen W X, Xue S B, Wang H, et al. Transactions of the China Welding Institution, 2009, 30(6), 75 (in Chinese).
陈文学, 薛松柏, 王慧, 等. 焊接学报, 2009, 30(6), 75.
70 Liu Z L, Yang K Z, Yi D F. Hot Working Technology, 2009, 38(11), 123 (in Chinese).
刘正林, 杨凯珍, 尹登峰. 热加工工艺, 2009, 38(11), 123.
71 Zhang M, Wang P F, Zhang L C, et al. Transactions of the China Wel-ding Institution, 2013, 34(10), 87 (in Chinese).
张满, 王鹏飞, 张临财, 等. 焊接学报, 2013, 34(10), 87.
72 Xu Z W, Yan J C, Wang C, et al. Materials Chemistry and Physics, 2008, 112(3), 831.
73 Zhang D D, Liu S Y, Chen Z, et al. Welding & Joining, 2017(4), 21 (in Chinese).
张冬冬, 刘树英, 陈泽, 等. 焊接, 2017(4), 21.
74 Kong C, Sun Y C, Li X F, et al. Welding & Joining, 2014(5), 36 (in Chinese).
孔聪, 孙禹冲, 李先芬, 等. 焊接, 2014(5), 36.
75 Liu F M, Yang C Z, Liu S T, et al. Hot Working Technology, 2009, 38(21), 32 (in Chinese).
刘凤美, 杨凯珍, 刘师田, 等. 热加工工艺, 2009, 38(21), 32.
76 Chen X, Hu A M, Li M, et al. Journal of Alloy and Compounds, 2008, 460(1-2), 478.
77 Meyers M A, Chawla K K. Mechanical behavior of material, Cambridge University Press, Cambridge, UK, 2009.
78 Hasan M M, Sharif A, Gafur M A. Journal of Materials Science:Materials in Electronics, 2020, 31, 1691.
79 Movahedi M, Kokabi A H, Hosseini H R M. Materials Characterization, 2009, 60(5), 441.
80 Yang H, Huang J H, Chen S M, et al. Acta Metallurgica Sinica, 2015, 51(3), 364 (in Chinese).
羊浩, 黄继华, 陈树海, 等. 金属学报, 2015, 51(3), 364.
81 Niu Z W, Ye Z, Huang J H, et al. Materials Characterization, 2018, 138, 78.
82 Fu Y G, Wang L, Xiao Y, et al. Electronics Process Technology, 2014, 35(6), 326 (in Chinese).
符永高, 王玲, 肖勇, 等. 电子工艺技术, 2014, 35(6), 326.
83 Yu G Y, Sun H D, Chen S H, et al. Journal of Materials Engineering and Performance, 2022, 31, 2410.
84 Huang J L, Long W M. Welding & Joining, 2011(3), 57 (in Chinese).
黄俊兰, 龙伟民. 焊接, 2011(3), 57.
85 Wang H L, Tian Z L, Li M E. Materials Research and Application, 2011, 5(2), 92 (in Chinese).
王洪礼, 田战玲, 李明娥. 材料研究与应用, 2011, 5(2), 92.
86 Pang S P, Shi Y B, Li J, et al. Journal of Rare Earths, 2000, 18(4), 344.
87 Tomasz Gancarz, Katarzyna Berent, Wojciech Skuza, et al. Metallurgical and Materials Transactions A, 2018, 49(7), 2684.
88 Xiao B, Wang D P, Cheng F J, et al. Material & Design, 2016, 90, 610.
89 Xiao Y, Ji H J, Li M Y, et al. Material & Design, 2013, 47, 717.
90 Bao J J, Gao Z G, Li C, et al. Materials for Mechanical Engineering, 2006, 30(12), 40 (in Chinese).
鲍俊娟, 高志广, 李川, 等. 机械工程材料, 2006, 30(12), 40.
91 Toru Nagaoka, Yoshiaki Morisada, Masao Fukusumi, et al. Journal of Materials Processing Technology, 2011, 211(9), 1534.
92 Fernandus M J, Senthilkumar T, Balasubramanian V. Transactions of the Indian Institute of Metals, 2011, 32(3), 1651.
93 Wang Z, Wang H, Liu L. Material & Design, 2012, 39, 14.
94 Liu L, Tan J, Liu X. Materials Letters, 2007, 61(11-12), 2373.
95 Hao X W, Nie H H, Ye Z, et al. Materials Science and Engineering A, 2019, 740-741, 218.
96 Long W M, Zhang L, Huang J L, et al. Materials Science & Technology, 2009, 17(1), 200 (in Chinese).
龙伟民, 张雷, 黄俊兰, 等. 材料科学与工艺, 2009, 17(1), 200.
97 Sun L C, Tian R Z. Journal of Central South University (Science and Technology), 1998, 19(2), 171 (in Chinese).
孙连超, 田荣璋. 中南大学学报(自然科学版), 1988, 19(2), 171.
98 Ye Z, Huang J H, Yang W J, et al. Welding in the World, 2020, 64, 1023.
99 Huang J L, Long W M, Zhong S J. Journal of Mechanical Science and Technology, 2020, 34(2), 711.
100 Ding B Z, Sun Y C, Wang P P. Silicon Valley, 2014(9), 48 (in Chinese).
丁宝珠, 孙禹冲, 王盼盼. 硅谷, 2014(9), 48.
101 Ye Z, Huang J H, Yang H, et al. Journal of Materials Research and Technology, 2019, 6(8), 5171.
102 Yu R Z, Li Y J, Liu S X, et al. Materials Research Express, 2019, 6, 026550.
103 Yu J Q, Chen Y. Welding & Joining, 1997(8), 11 (in Chinese).
虞觉奇, 陈永. 焊接, 1997(8), 11.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[8] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[9] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[10] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[11] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[12] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[13] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[14] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[15] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed