Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21090209-6    https://doi.org/10.11896/cldb.21090209
  金属与金属基复合材料 |
2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究
于以标1,2, 陈乐平1,2, 徐勇1,2,*, 袁源平1,2, 方森鹏1
1 南昌航空大学航空制造工程学院,南昌 330063
2 南昌航空大学轻合金加工科学与技术国防重点学科实验室,南昌 330063
High Temperature Tensile Deformation Behavior and Microstructure of 2060-T8E30 Al-Li Alloy
YU Yibiao1,2, CHEN Leping1,2, XU Yong1,2,*, YUAN Yuanping1,2, FANG Senpeng1
1 School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 12977KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 利用Sans CMT4104型拉伸试验机、光学显微镜、电子显微镜研究变形温度、应变速率对2060铝锂合金热变形行为与显微组织的影响,分析合金在不同热变形条件下的真应力-真应变曲线,并结合Zener-Hollomon方程得到合金的热变形参数。通过对合金第二相、空洞、断口形貌的观察,研究了合金热拉伸显微组织的演变规律。结果表明:高温拉伸时合金的峰值应力随变形温度的升高和应变速率的减小而下降。合金的延伸率随变形温度的升高而提高,随应变速率的减小先提高后降低,在500 ℃/0.01 s-1条件下延伸率最佳,达到170%。通过计算,得到合金的变形激活能为227.28 kJ/mol。显微组织显示,随着变形温度的升高和应变速率的减小,空洞的数量增多、尺寸增大;在变形温度为475~500 ℃时,合金析出了第二相并发生了几何动态再结晶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于以标
陈乐平
徐勇
袁源平
方森鹏
关键词:  2060-T8E30铝锂合金  热变形行为  动态再结晶  显微组织    
Abstract: The effect of deformation temperature and strain rate on the microstructure and hot deformation behavior of 2060-T8E30 Al-Li alloy was stu-died by Sans CMT4104 tensile testing machine, optical microscopy(OM) and scanning electron microscope(SEM). The true stress-strain curves of the alloy under different thermal deformation conditions were analyzed, and the thermal deformation parameters of the alloy were obtained by combining the Zener-Hollomon equation. By observing the second phase, cavity and fracture morphology, the microstructure evolution of the alloy under hot stretching was studied. The results show that the peak stress of the alloy decreases with the increase of deformation temperature and the decrease of strain rate. The elongation of the alloy increases with the increase of deformation temperature and then decreases with the decrease of strain rate. The elongation reaches 170% at 500 ℃/0.01 s-1. The deformation activation energy of the alloy is 227.28 kJ/mol. The microstructure shows that the number and size of cavities increase with the increase of deformation temperature and the decrease of strain rate. When the deformation temperature is 475—500 ℃, the second phase is precipitated and the geometric dynamic recrystallization occurs.
Key words:  2060-T8E30 Al-Li alloy    hot deformation behavior    dynamic recrystallization    microstructure
出版日期:  2023-03-25      发布日期:  2023-03-27
ZTFLH:  TG146.21  
基金资助: 航空科学基金(2019ZE056009);江西省重点研发计划(20202BBEL53012);轻合金加工科学与技术国防重点学科实验室基金(EG201903175)
通讯作者:  *徐勇,博士,毕业于南昌大学,现任南昌航空大学航空制造工程学院副教授。主要从事材料塑性成形理论与技术、精密成形技术、增材制造技术等研究,发表论文30余篇。xuyong@nchu.edu.cn   
作者简介:  于以标,2015年6月毕业于南昌航空大学科技学院,获得工学学士学位。现就读于南昌航空大学,主要从事铝锂合金的热变形行为、显微组织和性能调控的研究,围绕铝锂合金以第一作者发表文章3篇。
引用本文:    
于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
YU Yibiao, CHEN Leping, XU Yong, YUAN Yuanping, FANG Senpeng. High Temperature Tensile Deformation Behavior and Microstructure of 2060-T8E30 Al-Li Alloy. Materials Reports, 2023, 37(6): 21090209-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090209  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21090209
1 Lei L, Yang Q B, Zhang Z Q, et al. Materials Reports, 2019, 33(S1), 348(in Chinese).
雷林, 杨庆波, 张志清, 等. 材料导报, 2019, 33(S1), 348.
2 Wu X L, Liu M, Zang J X, et al. Materials Reports, 2016, 30(S2), 571(in Chinese).
吴秀亮, 刘铭, 臧金鑫, 等. 材料导报, 2016, 30(S2), 571.
3 Yang X M, Wang B Y, Zhou J, et al. International Journal of Lightweight Materials and Manufacture, 2020, 3(1), 36.
4 Zheng X, Luo P, Chu Z, et al. Materials Science and Engineering A, 2018, 736(24), 465.
5 Du S Y, Chen M H, Xie L S, et al. Rare Metal Materials and Engineering, 2018, 47(7), 2113(in Chinese).
杜舜尧, 陈明和, 谢兰生, 等. 稀有金属材料与工程, 2018, 47(7), 2113.
6 Ou L, Zheng Z Q, Nie Y F, et al. Journal of Alloys & Compounds, 2015, 648, 681.
7 Liu D Y, Ma Y L, Li J F, et al. Materials Characterization, 2021, 177(9), 111156.
8 Sivapragash M, Lakshminarayanan P R, Karthikeyan R, et al. Materials & Design, 2008, 29(4), 860.
9 Qiu P, Wang J Y, Duan X G, et al. Materials Reports, 2020, 34(8), 8106.
仇鹏, 王家毅, 段晓鸽, 等. 材料导报, 2020, 34(8), 8106.
10 Deng Z H, Li S Q, Wu Y, et al. Journal of Functional Materials, 2016, 47(11), 61(in Chinese).
邓赞辉, 李世清, 吴洋, 等. 功能材料, 2016, 47(11), 61.
11 Askariani S A, Pishbin S H. Journal of Alloys and Compounds, 2016, 688, 1058.
12 Hu M S. Scripta Metallurgica Et Materialia, 1991, 25(3), 695.
13 Miao J, Sutton S, Luo A A. Materials Science and Engineering A, 2020, 777, 139048.
14 Li H P, Yang D, Sun Q, et al. Aluminium Fabrication, 2020, 256(5), 15(in Chinese).
李红萍, 杨栋, 孙泉, 等. 铝加工, 2020, 256(5), 15.
15 EI Mehtedi M, Spigarelli S, Gabrielli F, et al. Materials Today, Procee-dings, 2015, 2(10), 4732.
16 Yang S L. Study on hot deformation behavior and microstructure, property of 2297 Al-Li alloy. Ph. D. Thesis, Beijing General Research Institute for Nonferrous Metals, China, 2016 (in Chinese).
杨胜利. 2297铝锂合金热变形行为与组织性能研究, 博士学位论文, 北京有色金属研究总院, 2016.
17 Yang S L, Shen J, Chen L Y, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(4), 674.
18 Yang M C, Sun Z G, Ma R, et al. Materials Science and Technology, 2014, 22(5), 119(in Chinese).
杨模聪, 孙中刚, 马锐, 等. 材料科学与工艺, 2014, 22(5), 119.
19 Ye L Y, Sun Q, Li H P, et al. Journal of Materials Engineering, 2019, 47(12), 92(in Chinese).
叶凌英, 孙泉, 李红萍, 等. 材料工程, 2019, 47(12), 92.
20 Zhao S, Ye L Y, Zhang X M. The Chinese Journal of Nonferrous Metals, 2013, 23(8), 2125(in Chinese).
赵莎, 叶凌英, 张新明. 中国有色金属学报, 2013, 23(8), 2125.
21 Li H, Liu Z Y, Lei Y. The Chinese Journal of Nonferrous Metals, 2001, 11(s1), 17(in Chinese).
李海, 刘志义, 雷毅. 中国有色金属学报, 2001, 11(s1), 17.
22 Yao Z, Zhong L W, Feng C H, et al. Materials for Mechanical Engineering, 2019, 43(5), 54(in Chinese).
姚泽, 钟立伟, 冯朝辉, 等. 机械工程材料, 2019, 43(5), 54.
23 Ridley N, Livesey D W, Mukherjee A K. Metallurgical Transactions A, 1984, 15(7), 1443.
24 Dec R B, Deschamps A, Donnadieu P, et al. Materials Science and Engineering A, 2013, 586, 418.
25 Wang L, Ran J, Zhang H. Materials Research and Application, 2019, 13(3), 173(in Chinese).
王亮, 冉嘉, 张浩. 材料研究与应用, 2019, 13(3), 173.
26 Kawasaki M, Cheng X, Langdon G. Acta Materialia, 2005, 53(20), 5353.
27 Ma G S, Wan M, Wu X D. Journal of Plasticity Engineering, 2007 (3), 68(in Chinese).
马高山, 万敏, 吴向东. 塑性工程学报, 2007(3), 68.
28 Wang J T, Zhu C C, Gao W L, et al. Rare Metals and Cemented Carbides, 2019, 47(1), 55(in Chinese).
王俭堂, 朱聪聪, 高文理, 等. 稀有金属与硬质合金, 2019, 47 (1), 55.
[1] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[2] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[5] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[6] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[7] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[8] 陈晨, 张亮, 王曦, 李木兰. Zn-Al系钎焊材料的研究进展[J]. 材料导报, 2023, 37(22): 22010081-13.
[9] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[10] 杜伟, 强军锋, 余竹焕, 高炜, 阎亚雯, 王晓慧, 刘旭亮. 电子封装用纳米复合焊膏的研究进展[J]. 材料导报, 2023, 37(19): 22010113-11.
[11] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[12] 代一博, 罗兵兵, 房卫萍, 易耀勇, 胡永俊, 易朋. 高碳铬不锈钢电子束焊接头性能研究[J]. 材料导报, 2023, 37(17): 22040270-5.
[13] 张兵宪, 杜明科, 雷龙宇, 张敏, 张志强. 补焊工艺对30CrMnSiA接头微观组织及性能的影响研究[J]. 材料导报, 2023, 37(16): 22020034-5.
[14] 常耀东, 齐会萍, 贾燕龙, 杨凯峰, 裴庆林, 熊波. 离心铸造双金属环件热辗扩实验研究[J]. 材料导报, 2023, 37(14): 21110004-8.
[15] 孙建, 黄贞益, 李景辉, 王萍, 章小峰. Fe-Mn-Al-C系低密度钢热处理研究进展[J]. 材料导报, 2023, 37(14): 22010032-12.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed