Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22030170-7    https://doi.org/10.11896/cldb.22030170
  金属与金属基复合材料 |
车身用22MnB5超高强热成形钢的热变形行为及热加工图
汤迁1, 郭鹏程1,2,*, 罗红1, 马洪浩1, 张立强1, 李落星2
1 中南林业科技大学机电工程学院,长沙 410004
2 湖南大学汽车车身先进设计制造国家重点实验室,长沙 410082
Hot Deformation Behavior and Hot Processing Map of Hot-formed 22MnB5 Ultra-high Strength Steel for Automobile Body
TANG Qian1, GUO Pengcheng1,2,*, LUO Hong1, MA Honghao1, ZHANG Liqiang1, LI Luoxing2
1 College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
2 State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 9738KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为确定22MnB5硼钢的热成形工艺,采用Gleeble-1500D热模拟试验机进行热模拟拉伸实验,变形温度为773~1 223 K,应变速率为0.01~10 s-1。结果表明:22MnB5硼钢具有较强的正应变速率敏感性,其峰值应力随变形温度的升高而减小;除773 K/0.01 s-1外,硼钢的流变应力随应变的增大逐渐增大,当达到峰值后趋于稳定;采用Arrhenius双曲正弦函数模型建立了硼钢的力学本构方程,确定了峰值应力下的热变形激活能Q为26.54~53.77 kJ/mol,其值随应变速率的增加先增大后减小,随变形温度的升高先减小后增大;基于动态材料模型构建了峰值应力下的硼钢热加工图,其热成形显微组织与变形温度和应变速率密切相关。基于此,确定了硼钢的热加工工艺:成形温度988~1 058 K、应变速率0.01~0.1 s-1;成形温度1 143~1 223 K、应变速率0.01~0.02 s-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤迁
郭鹏程
罗红
马洪浩
张立强
李落星
关键词:  22MnB5硼钢  热变形行为  热加工图  显微组织    
Abstract: To determine the hot forming processes of 22MnB5 boron steel, hot tensile tests were carried out at temperatures of 773—1 223 K and strain rates of 0.01—10 s-1 using Gleeble-1500D thermal simulation machine. The results show that the studied steel shows strong positive strain rate sensitivity, and its peak stress decreases with the increase of deformation temperature. Except for that deformed at 0.01 s-1 and 773 K, the flow stress increases gradually with the increase of applied strain, and then tends to be stable when it reaches the peak stress. The mechanical constitutive equation of the studied steel is established based on the Arrhenius hyperbolic sine function model, and the activation energy Q of thermal deformation at peak stress is determined (26.54—53.77 kJ/mol). The Q first increases followed by decrease with the increase of applied strain rate, and decreases followed by increase with the increase of deformation temperature. The hot working map of the studied boron steel with peak stress is constructed based on the dynamic material model, and the hot forming microstructure is closely related to deformation temperature and strain rate. Based on the above analysis, the hot working process of the studied boron steel is confirmed: forming temperature 988—1 058 K, strain rate 0.01—0.1 s-1; forming temperature 1 143—1 223 K, strain rate 0.01—0.02 s-1.
Key words:  22MnB5 boron steel    hot deformation behavior    hot processing map    microstructure
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TG306  
基金资助: 国家自然科学基金(U20A20275);湖南省教育厅科学研究项目(18B193);湖南省研究生科研创新项目(CX20220734)
通讯作者:  *郭鹏程,中南林业科技大学副教授、硕士研究生导师,2010年于中北大学获得学士学位,2013年于燕山大学获得硕士学位,2017年于湖南大学获机械工程博士学位。主要研究方向为整车多学科多目标优化设计及车身用高强钢与铝镁合金成形技术。发表论文30余篇,授权专利2项。gpch860429@163.com   
作者简介:  汤迁,2018年6月毕业于长沙学院,获得工学学士学位,现为中南林业科技大学机电工程学院硕士研究生。主要研究方向为车身用轻量化材料的动态冲击变形行为及成形技术。
引用本文:    
汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
TANG Qian, GUO Pengcheng, LUO Hong, MA Honghao, ZHANG Liqiang, LI Luoxing. Hot Deformation Behavior and Hot Processing Map of Hot-formed 22MnB5 Ultra-high Strength Steel for Automobile Body. Materials Reports, 2023, 37(18): 22030170-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030170  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22030170
1 Kang Y L. Iron and Steel, 2008, 43(6), 1 (in Chinese).
康永林.钢铁, 2008, 43(6), 1.
2 Çavuğlu O, Çavuğlu O, Yilmazoğlu A G, et al. Journal of Materials Research and Technology, 2020, 9(5), 10901.
3 Yao S, Chen L, Chu G, et al. Materials, 2020, 13(7), 1741.
4 Zhou J, Wang B Y, Huang M D, et al. International Journal of Minerals Metallurgy and Materials, 2014, 21(6), 544.
5 Andreiev A, Grydin O, Schaper M. Steel Research International, 2016, 87(12), 1733.
6 Siltanen J, Minkkinen A, Järn S. Physics Procedia, 2017, 89, 139.
7 Šebestová H, Horník P, Mikmeková Š, et al. Materials, 2021, 14(14), 3943.
8 Bok H H, Kim S N, Suh D W, et al. Materials Science and Engineering A, 2015, 626, 67.
9 Wang S S, Yu H Y, Chen M. Journal of Plasticity Engineering, 2019, 26(3), 70 (in Chinese).
王三省, 余海燕, 陈梦.塑性工程学报, 2019, 26(3), 70.
10 Min Y A, Zhao J F, Lin J P, et al. Journal of Tongji University(Natural Science), 2016, 44(1), 113 (in Chinese).
闵永安, 赵洁璠, 林建平, 等. 同济大学学报(自然科学版), 2016, 44(1), 113.
11 Min J, Lin J. Journal of Materials Processing Technology, 2013, 213(6), 818.
12 Zhang M, Wan Z, Li L. Materials Today: Proceedings, 2015, 2, S697.
13 Wu J Y. Rare Metal Materials and Engineering, 2021, 50(6), 2061 (in Chinese).
吴静怡. 稀有金属材料与工程, 2021, 50(6), 2061.
14 Sellars C M, Mctegart W J. Acta Metallurgica, 1966, 14(9), l136.
15 Su Y, Kong F T, You F H, et al. Vacuum, 2020, 173, 109135.
16 Peng J H, Sun Q J, Zhou J W, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(4), 994 (in Chinese).
彭嘉豪, 孙前江, 周建伟, 等. 中国有色金属学报, 2022, 32(4), 994.
17 Al-Saadi M, Hulme-Smith C, Sandberg F, et al. Journal of Materials Engineering and Performance, 2021, 30(10), 7770.
18 Zhang B, Liu P R, Chen H F, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(2), 466 (in Chinese).
张兵, 刘鹏茹, 陈韩锋, 等. 中国有色金属学报, 2022, 32(2), 466.
19 Prasad Y V R K, Rao K P, Sasidhara S. Hot working guide: a compen-dium of processing maps, ASM International, Cleveland, USA, 2015.
20 Shi Z, Liu K, Wang M, et al. Materials Science and Engineering: A, 2012, 535, 290.
21 Naderi M, Saeed-Akbari A, Bleck W. Materials Science and Engineering: A, 2008, 487(1-2), 445.
22 Çavuğlu O, Çavuğlu O, Yilmazoğlu A G, et al. Journal of Materials Research and Technology, 2020, 9(5), 10901.
23 He X, Qin Y Q, Jiang W X. Journal of Materials Processing Technology, 2019, 270, 285.
[1] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[2] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[3] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[4] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[5] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[6] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[7] 代一博, 罗兵兵, 房卫萍, 易耀勇, 胡永俊, 易朋. 高碳铬不锈钢电子束焊接头性能研究[J]. 材料导报, 2023, 37(17): 22040270-5.
[8] 张兵宪, 杜明科, 雷龙宇, 张敏, 张志强. 补焊工艺对30CrMnSiA接头微观组织及性能的影响研究[J]. 材料导报, 2023, 37(16): 22020034-5.
[9] 常耀东, 齐会萍, 贾燕龙, 杨凯峰, 裴庆林, 熊波. 离心铸造双金属环件热辗扩实验研究[J]. 材料导报, 2023, 37(14): 21110004-8.
[10] 孙建, 黄贞益, 李景辉, 王萍, 章小峰. Fe-Mn-Al-C系低密度钢热处理研究进展[J]. 材料导报, 2023, 37(14): 22010032-12.
[11] 赵吉康, 肖平安, 顾景洪, 钟斯远. TiCNp增强高铬铸铁复合材料的制备与性能[J]. 材料导报, 2023, 37(13): 21110021-5.
[12] 王帅, 郭二军, 冯义成, 付金来, 马宝霞, 赵思聪, 王雷. 冷轧变形对Al-Cu-Mg合金的显微组织与力学性能的影响[J]. 材料导报, 2023, 37(11): 21120197-7.
[13] 张帆, 薛松柏, 王博, 黄智恒, 龙伟民. 钕对ER5183铝合金焊丝及接头性能与组织的影响研究[J]. 材料导报, 2023, 37(11): 21080188-5.
[14] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[15] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed