Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21090144-6    https://doi.org/10.11896/cldb.21090144
  金属与金属基复合材料 |
转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响
聂浩1, 徐洋2, 柯黎明1,2,*, 邢丽1
1 南昌航空大学轻合金加工科学与技术国防重点学科实验室,南昌 330063
2 西北工业大学凝固技术国家重点实验室,西安 710072
Effect of Rotational Speed on Frictional Heat Production and Interface Structure of Thick Plate Al/Mg Dissimilar Materials by Friction Stir Welding
NIE Hao1, XU Yang2, KE Liming1,2,*, XING Li1
1 National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 6405KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过改变搅拌头转速对20 mm厚的铝/镁异种材料进行搅拌摩擦焊,利用K型热电偶测温、扫描电镜(SEM)、能谱分析(EDS)、电子探针(EPMA)等测试方法,研究了搅拌头转速对摩擦产热、焊缝成形及界面组织的影响规律。结果表明,在同一转速下,板厚方向上存在温度梯度,自上而下温度逐渐降低,铝侧界面上下温差高于镁侧界面;同一厚度上相对称的两点,铝侧界面的峰值温度高于镁侧界面。随着转速的增加,摩擦产热增多,但是增幅显著减小。焊缝成形随着转速的增加逐渐变差;在转速为375 r/min时,接头镁侧界面上部存在12 μm厚的连续带状Al3Mg2层和74 μm厚的Mg+Al12Mg17共晶层,中部IMCs层和共晶层厚度较上部减小,下部只存在Al3Mg2和Al12Mg17 IMCs层,并未发现共晶层。随着转速增加,镁侧界面处的IMCs层与共晶层的厚度显著增加,接头断裂发生在镁侧界面的Al3Mg2层和铝合金带之间。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂浩
徐洋
柯黎明
邢丽
关键词:  铝/镁异种材料  搅拌摩擦焊  厚板  摩擦产热  界面显微组织    
Abstract: The friction stir welding of 20 mm thick Al /Mg dissimilar materials was carried out by employing different rotational speeds. In this study, the influence of the rotation speed on the friction heat production, weld formation and interface structure of thick Al/Mg dissimilar materials by friction stir welding were examined using K-type thermocouple temperature measurement, scanning electron microscopy with an energy dispersive spectroscopy and electron probe micro analyzer. The results show that there is temperature gradient along the thickness direction of the workpiece, the temperature decreases gradually from upper to bottom. Furthermore, the temperature difference on the interfaces of the Al side is higher than that of Mg side at the same rotational speed. The peak temperature on the Al side is also higher than that on the Mg side for two symmetric points at the same thickness of weld. The weld formation gradually deteriorates with the increase of the speed. At 375 r/min, a band-shaped Al3Mg2 layer with a thickness of 12 μm and a thickness of 74 μm Mg+Al12Mg17 eutectic layer were found on the top of the Mg side interface. The thickness of IMCs and eutectic layer in the middle part is smaller than that in the upper part, while no eutectic layer is found in the bottom part. As the rotational speed increased, the thickness of the Al3Mg2 layer and the eutectic layer increased significantly.The joint fracture occurred between the Al3Mg2 layer and the Al alloy strip at the Mg side interface.
Key words:  Al/Mg dissimilar material    friction stir welding    thick plate    frictional heat production    interface microstructure
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TG4  
基金资助: 国家自然科学基金(51874179)
通讯作者:  *柯黎明,教授、博士研究生导师。1978—1984年在西北工业大学获学士和硕士学位,2004—2008年在清华大学机械工程系获博士学位。中国机械工程学会焊接学会理事,江西省焊接学会理事长,江西省“井冈学者”特聘教授。主要从事搅拌摩擦焊、焊接冶金以及先进金属材料的先进连接技术等方面的研究工作,发表论文80余篇。liming_ke@126.com   
作者简介:  聂浩,2020年6月于南昌航空大学获得工学学士学位,现为南昌航空大学航空制造工程学院硕士研究生,主要研究方向为异种金属材料焊接。
引用本文:    
聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
NIE Hao, XU Yang, KE Liming, XING Li. Effect of Rotational Speed on Frictional Heat Production and Interface Structure of Thick Plate Al/Mg Dissimilar Materials by Friction Stir Welding. Materials Reports, 2023, 37(8): 21090144-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090144  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21090144
1 Chen B, Wang Y, Xiao C, et al. Materials Science & Technology, 2017, 34(6), 1.
2 Liu L, Ren D, Liu F. Materials, 2014, 7(5), 3735.
3 Zhao J J, Su H, Shi L, et al. Journal of Mechanical Engineering, 2020, 56(6), 24(in Chinese).
赵俊杰, 宿浩, 石磊, 等.机械工程学报, 2020, 56(6), 24.
4 Li D, Sun M H, Cui Z Q, et al.Transactions of the China Welding Instition, 2011, 32(8), 97 (in Chinese).
李达, 孙明辉, 崔占全, 等.焊接学报, 2011, 32(8), 97.
5 Liu Z L, Cui H T, Ji S D, et al. Transactions of the China Welding Instition, 2016, 37(6), 23 (in Chinese).
刘震磊, 崔祜涛, 姬书得, 等. 焊接学报, 2016, 37(6), 23.
6 Baghdadi A H, Sajuri Z, Selamat N F M, et al. International Journal of Minerals Metallurgy and Materials, 2019, 26(10), 1285.
7 Shi H, Chen K, Liang Z Y, et al. Journal of Materials Science & Technology, 2017, 33(4), 359.
8 Masoudian A, Tahaei A, Shakiba A, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(5), 1317.
9 McLean A A, Powell G L F, Brown I H, et al. Science and Technology of Welding and Joining, 2003, 8(6), 462.
10 Venkateswaran P, Reynolds A P. Materials Science & Engineering A, 2012, 545, 26.
11 Xu Y, Ke L M, Mao Y Q, et al.Materials, 2019, 12(17), 2661.
12 Mao Y Q, Ke L M, Chen Y H, et al. Materials Reports, 2017, 31(24), 145 (in Chinese).
毛育青, 柯黎明, 陈玉华, 等.材料导报, 2017, 31(24), 145.
13 Firouzdor V, Kou S.Metallurgical and Materials Transactions A, 2010, 41(11), 2914.
14 Azizieh M, Alavijeh A S, Abbasi M, et al. Materials Chemistry & Phy-sics, 2016, 170, 251.
15 Fu B L, Qin G L, Li F, et al. Journal of Materials Processing Tech-nology, 2015, 218, 38.
16 Zeng H R. Effects of stirring needle morphology and auxiliary heating on the formation of aluminum/magnesium FSW weld. Master's Thesis, Nanchang Hangkong University, China, 2019 (in Chinese).
曾浩然. 搅拌针形貌及辅助加热对铝/镁FSW焊缝成形的影响. 硕士学位论文, 南昌航空大学, 2019.
17 Editorial Committee of China Aerospace Materials Handbook. China aeronautical materials handbook, Volume 3, Aluminum and magnesium alloys, China Standards Press, China, 2001( in Chinese).
中国航空材料手册编辑委员会.中国航空材料手册, 第三卷, 铝合金、镁合金, 中国标准出版社, 2001.
18 Trueba J L, Heredia G, Rybicki D, et al. Journal of Materials Proce-ssing Technology, 2015, 219, 271.
19 Wu X H,Cao L J,Miao C H,et al. Journal of Chongqing University of Technology(Natural Science),2022,36(2),76(in Chinese).
吴晓虎,曹丽杰,苗臣怀,等. 重庆理工大学学报(自然科学),2022,36(2),76.
20 Xu W F, Liu J H, Luan G H, et al. Materials and Design, 2009, 30(6), 1886.
21 Zhang C, Cui L, Liu Y, et al. Journal of Materials Science & Technology, 2018, 34(5), 756.
22 Massalski T B, Okamoto H, Subramanian P, et al. Binary alloy phase diagrams, OH: American Society for Metals, America,1986.
23 Gerlich A, Su P, North T H. Science and Technology of Welding and Joining. 2005, 10(6), 647.
24 Wang P, Hu S, Shen J Q, et al. Materials Science and Engineering: A, 2016, 652, 127.
25 Xu L, Robson J D, Wang L, et al. Metallurgical & Materials Transactions A, 2018, 49, 515.
26 Wang Y, Prangnell P B. Materials Characterization, 2017, 134, 84.
27 Pal S K, Mahto R P, Kumar R, et al. Materials Characterization, 2020, 160(1-4), 110115.
28 Chang C I, Lee C J, Huang J C. Scripta Materialia, 2004, 51, 509.
[1] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[2] 高士康, 赵洪运, 李高辉, 周利, 刘会杰, 张成聪. 铝基复合材料搅拌摩擦焊研究现状[J]. 材料导报, 2022, 36(24): 21040264-9.
[3] 郑洋, 宿振宇, 张璇. 铝/镁异质金属搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(z2): 346-352.
[4] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[5] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[6] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[7] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[8] 金玉花, 张林, 张亮亮, 王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能[J]. 材料导报, 2020, 34(20): 20107-20111.
[9] 仇一卿, 范祝男, 黄春平, 李宝华, 唐众民. 厚板Cu-Cr-Zr合金搅拌摩擦焊接接头沿厚度方向组织和力学性能的变化[J]. 材料导报, 2020, 34(10): 10162-10165.
[10] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[11] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[12] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[13] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[14] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[15] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed