Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20107-20111    https://doi.org/10.11896/cldb.19100068
  金属与金属基复合材料 |
7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能
金玉花1,2, 张林1, 张亮亮1, 王希靖1,2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Microtexture Evolution and Mechanical Properties of Friction Stir Welded 7050 Aluminum Alloy
JIN Yuhua1,2, ZHANG Lin1, ZHANG Liangliang1, WANG Xijing1,2
1 Material Science and Engineering Institute, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 5645KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对5 mm厚的7050铝合金搅拌摩擦焊接头各区域的微观织构演变、硬度分布及拉伸性能进行了研究,并与完整焊缝接头的拉伸性能进行了对比。结果表明:母材主要为亚结构组织,存在(011)[100]高斯织构、(112)[$11\bar{1}$]铜织构和(001)[100]立方织构;焊核区发生动态再结晶,主要为[100]//WD、[110]//WD、[111]//WD丝织构;前进侧热力影响区存在(111)[$\bar{1}10$]剪切织构、(110)[$\bar{1}12$]黄铜织构、(100)[$0\bar{1}2$]和(100) [$01\bar{2}$]再结晶织构;而后退侧热力影响区为(001)[110]旋转立方再结晶织构和(112)[$11\bar{1}$]铜织构,主要是由各微区热-力作用不同导致。焊缝区硬度呈“W”型分布,硬度最小值出现在后退侧热影响区。前进侧与后退侧抗拉强度分别为496.9 MPa和505.2 MPa,达到母材强度的88%和90%;焊核区抗拉强度为440.4 MPa;完整焊缝抗拉强度最低,为415.7 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金玉花
张林
张亮亮
王希靖
关键词:  7050铝合金  搅拌摩擦焊  电子背散射衍射(EBSD)  拉伸性能    
Abstract: The microtexture evolution, hardness distribution and tensile properties of the friction stir welded joint of 7050 aluminum alloy with a thickness of 5 mm were studied and compared with the tensile properties of the complete welded joints. The results show that the base metal is mainly for the substructure, with (011) [100] Goss texture, (112) [$11\bar{1}$] copper texture and (001) [100] Cube texture. Dynamic recrystallization occurred in the weld nugget zone, mainly existing in [100]//WD, [110]//WD, [111]//WD fiber texture. There are (111) [$\bar{1}10$] shear texture, (110) [$\bar{1}12$] brass texture, (100) [$01\bar{2}$] and (100) [012] recrystallization texture in the thermos- mechanically affected zone of advancing side; the thermo-mechanically affected zone of retreating side is (001) [110] rotating cubic recrystallization texture and (112) [$11\bar{1}$] copper texture, mainly due to different thermal-mechanical action in each microzone. The hardness of the weld zone is “W” type distribution, and the lo-west hardness is located in the heat-affected zone of retreating side. The tensile strength of the advancing side and the retreating side of the weld is 496.9 MPa and 505.2 MPa, respectively, reaching 88% and 90% of the tensile strength of the base metal. The tensile strength of the weld nugget zone is 440.4 MPa. The tensile strength of the complete welded joints is the lowest, 415.7 MPa.
Key words:  7050 aluminum alloy    friction stir weld    electron backscattered diffraction(EBSD)    tensile property
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TG453  
基金资助: 国家自然科学基金(51865028)
通讯作者:  yhjin8686@163.com   
作者简介:  金玉花,兰州理工大学,副教授。主要从事有色金属及其合金的搅拌摩擦焊连接机理研究,镍基合金的熔炼、抗高温性能研究以及表面改性工艺研究。近年来在国内外重要期刊发表文章30余篇。
引用本文:    
金玉花, 张林, 张亮亮, 王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能[J]. 材料导报, 2020, 34(20): 20107-20111.
JIN Yuhua, ZHANG Lin, ZHANG Liangliang, WANG Xijing. Microtexture Evolution and Mechanical Properties of Friction Stir Welded 7050 Aluminum Alloy. Materials Reports, 2020, 34(20): 20107-20111.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100068  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20107
1 Yang W J, Ding H, Mu Y L, et al. Materials Science and Engineering:A, 2017, 707, 193.
2 Komarasamy M, Alagarsamy K, Ely L, et al. Materials Science and Engineering:A, 2018, 716, 55.
3 Zhang F, Su X K, Chen Z Y, et al. Materials & Design, 2015, 67(15), 483.
4 Jin Y H, Wang X J, Li C F, et al.Hot Working Technology, 2010, 39(15), 122(in Chinese).
金玉花, 王希靖, 李常锋, 等. 热加工工艺, 2010, 39(15), 122.
5 Rouzbehani R, Kokabi A H, Sabet H, et al.Journal of Materials Proces-sing Technology, 2018, 67(15), 239.
6 Jin Y H, Huo R J, Li C F, et al.Transactions of the China Welding Institution, 2017, 38(2), 10(in Chinese).
金玉花, 霍仁杰, 李常峰, 等. 焊接学报, 2017, 38(2), 10.
7 Liu Y, Deng C Y, Gong B M. Materials Science and Engineering:A, 2019, 764.
8 Mao Y Q, Ke L M, Chen Y H, et al. Journal of Materials Science & Technology, 2018, 34(1), 228.
9 Zhao Y X, Yang Z Y, Domblesky J P, et al.Materials Science and Engineering:A, 2019, 760, 316.
10 Dong P, Liu Z P, Zhai X, et al. International Journal of Fatigue, 2019, 124, 15.
11 Suhuddin, U F H R, Mironov S, Sato Y S, et al.Materials Science and Engineering:A, 2010, 527(7-8), 1962.
12 Zhang L L, Wang X J, Liu X. Materials Review, 2019, 33(2), 665.
13 Kalemba L, Muszka K, Wrobel M, et al. Solid State Phenomena, 2013, 203-204, 258.
14 Gong W B, Tian H J, Liu W, et al. Rare Metal Materials and Enginee-ring, 2012(2), 854(in Chinese).
宫文彪, 田红娇, 刘威, 等. 稀有金属材料与工程, 2012(2), 854.
15 Song K H, Fujii H, Nakata K. Materials & Design, 2009, 30, 3972.
16 Yamagata H, Ohuchida Y, Saito N.Materials Transactions, 2001, 42(11), 2440.
17 Field D P, Nelson T W, Hovanski Y, et al. Metallurgical and Materials Transactions A, 2001, 32(11), 2869.
18 Denquin A, Allehaux D, Campagnac M H, et al. Materials Science Forum, 2003, 426(4), 2921.
19 Wu Y W. Investigation based on strengthening mechanism of ther-moechanically affected zone of aluminum alloy friction stir welded joints. Master’s Thesis, Lanzhou University of Technology, China, 2018(in Chinese).
吴永武. 铝合金搅拌摩擦焊接头热机影响区强化研究. 硕士学位论文, 兰州理工大学, 2018.
[1] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[2] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[3] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[4] 王铁军, 秦巍, 陈永庆, 闫英杰, 曹睿, 梁晨, 董浩, 车洪艳. Al和Mo含量对热等静压制备的FeCrAlMo合金组织及拉伸性能的影响[J]. 材料导报, 2020, 34(12): 12105-12109.
[5] 仇一卿, 范祝男, 黄春平, 李宝华, 唐众民. 厚板Cu-Cr-Zr合金搅拌摩擦焊接接头沿厚度方向组织和力学性能的变化[J]. 材料导报, 2020, 34(10): 10162-10165.
[6] 吴懿萍, 何臻毅, 周志纲, 熊汉青, 贾寓真, 李承波, 李国锋. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(Z2): 394-397.
[7] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[8] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[9] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[10] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[11] 王磊, 易幼平, 黄始全, 董非. 固溶前深冷变形处理对7050铝合金组织和性能的影响[J]. 材料导报, 2019, 33(20): 3467-3471.
[12] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[13] 罗子艺, 韩善果, 陈永城, 蔡得涛, 哈斯金·弗拉基斯拉夫. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146-2150.
[14] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[15] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed