Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21040264-9    https://doi.org/10.11896/cldb.21040264
  金属与金属基复合材料 |
铝基复合材料搅拌摩擦焊研究现状
高士康1,2, 赵洪运1,2, 李高辉1,2, 周利1,2,*, 刘会杰1, 张成聪3,*
1 哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨 150001
2 哈尔滨工业大学(威海)山东省特种焊接技术重点实验室,山东 威海 264209
3 上海航天设备制造总厂有限公司,上海 200245
Research Status of Friction Stir Welding of Aluminum Matrix Composites
GAO Shikang1,2, ZHAO Hongyun1,2, LI Gaohui1,2, ZHOU Li1,2,*, LIU Huijie1, ZHANG Chengcong3,*
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2 Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong, China
3 Shanghai Aerospace Equipments Manufacturer, Shanghai 200245, China
下载:  全 文 ( PDF ) ( 24143KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝基复合材料具有低密度、高比强度、高硬度、高耐磨性、良好的导电性、良好的热稳定性等优点,被广泛应用于汽车、航空航天等领域,已经成为重要的工程结构材料,其焊接受到了国内外学者的密切关注。然而,铝基复合材料中加入的增强相使其与基体铝合金之间的热膨胀系数、导热系数等热物理性能相差较大,导致其焊接性较差。采用传统熔焊方法焊接此类材料时难度较大,接头性能较低,限制了其工程应用。搅拌摩擦焊作为一种新型的固相连接技术,应用于铝基复合材料焊接时展现出接头成形良好、性能优异等特点,近年来受到了国内外的广泛关注。本文重点介绍了国内外针对铝基复合材料搅拌摩擦焊接的研究现状,并对其未来的研究方向做出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高士康
赵洪运
李高辉
周利
刘会杰
张成聪
关键词:  铝基复合材料  搅拌摩擦焊  接头成形  微观组织  力学性能  搅拌头磨损    
Abstract: Aluminum matrix composites have been widely used in the automotive and aerospace industries due to the superior properties of low density, high specific strength, high hardness, good electrical conductivity and thermal stability. Therefore, as one of the important engineering structure materials, the welding of aluminum matrix composites has been paid extensive attention by the scholars at home and abroad. However, the weldability of the aluminum matrix composites is relatively poor, which could be attributed to significant difference in the thermal expansion coefficient and thermal conductivity between additional reinforcing particles and aluminum alloy. For traditional fusion welding, it is difficult to weld aluminum matrix composites due to the poor joint quality and mechanical performance, which restricts its industrial application. Friction stir welding (FSW), as a new solid state joining method, has shown a series of advantages in case of welding aluminum matrix composites. The welded joints generally exhibit good formation and excellent mechanical performance. In recent years, FSW has received extensive interests. In this paper, the research status of friction stir welding for aluminum matrix composites is introduced, and the future research direction is prospected.
Key words:  aluminum matrix composite    friction stir welding    joint formation    microstructure    mechanical property    wear of FSW tool
发布日期:  2023-01-03
ZTFLH:  TG457.14  
基金资助: 国家自然科学基金(51974100;51775143);上海市国际科技合作项目(18190730800)
通讯作者:  zhou.li@hit.edu.cn;zhangcc0202@163.com   
作者简介:  高士康,2020年6月毕业于哈尔滨工业大学(威海),获得工学学士学位。现为哈尔滨工业大学(威海)材料科学与工程学院硕士研究生,主要研究领域为轻质高强材料搅拌摩擦焊。
周利,现为哈尔滨工业大学(威海)材料学院副教授/博士研究生导师,2000—2010年在哈尔滨工业大学焊接专业(方向)先后获学士、硕士和博士学位,主要从事固相连接技术、金属表面改性与增材制造、焊接冶金等方面研究,近年来以第一/通讯作者发表SCI/EI检索论文60余篇。
张成聪,2012年获清华大学机械工程系硕士学位,2016年以访问学者前往英国开放大学,2020年入选“上海市青年科技启明星计划”。近年来发表相关SCI/EI检索论文7篇。现任上海航天设备制造总厂有限公司特种焊接工艺研究室主任,主要研究方向为固相焊接,包括扩散焊、搅拌摩擦焊、搅拌摩擦点焊等。
引用本文:    
高士康, 赵洪运, 李高辉, 周利, 刘会杰, 张成聪. 铝基复合材料搅拌摩擦焊研究现状[J]. 材料导报, 2022, 36(24): 21040264-9.
GAO Shikang, ZHAO Hongyun, LI Gaohui, ZHOU Li, LIU Huijie, ZHANG Chengcong. Research Status of Friction Stir Welding of Aluminum Matrix Composites. Materials Reports, 2022, 36(24): 21040264-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040264  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21040264
1 Chao Q, Sun J F, Sun Z G, et al. Aeroengine, 2018, 44(4), 91(in Chinese).
巢青, 孙剑芬, 孙志刚, 等. 航空发动机, 2018, 44(4), 91.
2 Huo S Y, Jie L J, Xiang J F, et al. Tool Engineering, 2018, 52(10), 3(in Chinese).
霍石岩, 解丽静, 项俊锋, 等. 工具技术, 2018, 52(10), 3.
3 Surappa M K. Sadhana, 2003, 28(1), 319.
4 Salih O S, Ou H, Sun W, et al. Materials & Design, 2015, 86, 61.
5 Marie-Noëlle A, Simar A. Materials Characterization, 2016, 120, 1.
6 Meng X C, Huang Y X, Cao J, et al. Progress in Materials Science, 2021, 115, 100706
7 Storjohann D, Barabash O M, David S A, et al. Metallurgical and Materials Transactions A, 2005, 36(11), 3237.
8 Peng K, Cui H C, Lu F G, et al. Transactions of Nonferrous Metals So-ciety of China, 2011, 21(9), 1925.
9 Liu H, Hu Y, Zhao Y. Materials Letters, 2015, 158, 136.
10 Niu J, Pan L, Wang M, et al. Vacuum, 2006, 80(11-12), 1396.
11 Mishra R S, Ma Z Y. Materials Science and Engineering: Reports, 2010, 50(1-2), 1.
12 Liu H J, Feng J C, Fujii H, et al. International Journal of Machine Tools and Manufacture, 2005, 45(14), 1635.
13 Mohanty H K, Mahapatra M M, Kumar P, et al. Journal of Marine Science Application, 2012, 11, 200.
14 Chen X G, Silva M D, Gougeon P, et al. Materials Science & Enginee-ring A, 2009, 518(1-2), 174.
15 Vijay S J, Murugan N. Materials & Design, 2010, 31(7), 3585.
16 Ma Z Y, Feng A H, Xiao B L, et al. In: 5th International Conference on Processing and Manufacturing of Advanced Materials. Vancouver, 2007, pp. 3814.
17 Ni D R, Chen D L, Wang D, et al. Materials & Design, 2013, 51, 199.
18 Feng A H, Xiao B L, Ma Z Y. Composites Science & Technology, 2008, 68(9), 2141.
19 Feng T, Yu Z Q, Han Y, et al. Journal of Aeronautical Materials, 2013, 33(4), 27(in Chinese).
冯涛, 郁振其, 韩洋, 张永昂, 等. 航空材料学报, 2013, 33(4), 27.
20 Uzun H. Materials & Design, 2007, 28(5), 1440.
21 Marzoli L M, Strombeck A V, Santos J F D. Composites Science & Technology, 2006, 66(2), 363.
22 Wang D, Xiao B L, Wang Q Z, et al. Journal of Materials Science & Technology, 2014, 30(1), 54.
23 Periyasamy P, Mohan B, Balasubramanian V. Journal of Materials Engineering & Performance, 2012, 21(11), 2417.
24 Kumar N. Materials & Design, 2013, 51, 998.
25 Li J Y, Zhao Y, Chen H B. Journal of Materials Engineering, 2005(1), 29(in Chinese).
李敬勇, 赵勇, 陈华斌. 材料工程, 2005(1), 29.
26 Chen H B, Yan J, Li J Y, Jiang C Y, et al. Journal of East China Shipbuilding Institute (Natural Science Edition), 2004(3), 62(in Chinese).
陈华斌, 严铿, 李敬勇, 蒋成禹, 等. 华东船舶工业学院学报(自然科学版), 2004(3), 62.
27 Li J Y, Zhao Y. Development and Application of Materials, 2004(6), 30(in Chinese).
李敬勇, 赵勇. 材料开发与应用, 2004(6), 30.
28 Wang S S, Mao C H, Yang J, et al. Chinese Journal of Rare Metals, 2012, 36(1), 167(in Chinese).
汪山山, 毛昌辉, 杨剑, 等. 稀有金属, 2012, 36(1), 167.
29 Minak G, Ceschini L, Boromei I, et al. International Journal of Fatigue, 2010, 32(1), 218.
30 Liu H, Hu Y, Zhao Y, et al. Materials & Design, 2015, 65, 395.
31 Ceschini L, Boromei I, Minak G, et al. Composites Part A, 2007, 38(4), 1200.
32 Peddavarapu S, Raghuraman S, Bharathi R J, et al. Transactions of the Indian Institute of Metals, 2017, 70(3), 703.
33 Storjohann D, Barabash O M, David S A, et al. Metallurgical and Materials Transactions A, 2005, 36(11), 3237.
34 Mohammadnezhad, Mahyar, Zabolian, et al. Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science, 2015, 46(12), 5747.
35 Salih O S, Ou H, Wei X, et al. Materials Science and Engineering: A, 2019, 742, 78.
36 Bozkurt Y, Uzun H, Salman S. Journal of Composite Materials, 2011, 45(21), 2237.
37 Sun R J. Electric Welding Machine, 2015, 45(3), 81 (in Chinese).
孙汝继.电焊机, 2015, 45(3), 81.
38 Wang D, Wang Q Z, Xiao B L, et al. Acta Metallurgica Sinica, 2014, 50(4), 489 (in Chinese).
王东, 王全兆, 肖伯律, 等. 金属学报, 2014, 50(4), 489.
39 Cioffi F, Fernandez R, Gesto D, et al. Composites Part A Applied Science and Manufacturing, 2013, 54, 117.
40 Yao T T. Study on friction stir welding technology and weld metal migration behavior of particle reinforced aluminum matrix composites. Master's Thesis, Jiangsu University of Science and Technology, China, 2015 (in Chinese).
姚婷婷. 颗粒增强铝基复合材料搅拌摩擦焊工艺及焊缝金属迁移行为研究. 硕士学位论文, 江苏科技大学, 2015.
41 Herbert M A, Shettigar A K, Nigalye A V, et al. In: 2nd International Manufacturing Engineering Conference (iMEC) / 3rd Asia-Pacific Conference on Manufacturing Systems (APCOMS). Kuala Lumpur, Malaysia, 2015, pp. 1014.
42 Kalaiselvan K, Murugan N. Transactions of Nonferrous Metals Society of China (English Edition), 2013, 23(3), 616.
43 Nami H, Adgi H, Sharifitabar M, et al. Materials & Design, 2011, 32(2), 976.
44 Kumar A, Mahapatra M M, Jha P K, et al. Materials & Design, 2014, 59, 406.
45 Cavaliere P, Cerri E, Marzoli L, et al. Applied Composite Materials, 2004, 11(4), 247.
46 Ji P F, Zhang Z, Zhao G H, et al. Aerospace Materials & Technology, 2020, 50(3), 11(in Chinese).
计鹏飞, 张振, 赵光辉, 等. 宇航材料工艺, 2020, 50(3), 11.
47 Yigezu B S, Venkateswarlu D, Mahapatra M M, et al. Materials & Design, 2014, 54(2), 1019.
48 Hassan A M, Qasim T, Ghaithan A. Materials and Manufacturing Processes, 2012, 27(12), 1397.
49 Zhang Y N, Cao X, Larose S, et al. Canadian Metallurgical Quarterly, 2012, 51(3), 250.
50 Han G Y. Study on microstructure and mechanical properties of friction stir welded in-situ TiB2/Al-Si-Mg composite. Master's Thesis, Shanghai Jiao Tong University, China, 2018 (in Chinese).
韩高阳. 原位自生TiB2/Al-Si-Mg复合材料搅拌摩擦焊接的微观组织与力学性能研究. 硕士学位论文, 上海交通大学, 2018.
51 Zhao X Q, Xu X H, Hua P, et al. Journal of Netshape Forming Engineering, 2015, 7(4), 53(in Chinese).
赵小强, 许新猴, 华鹏, 等. 精密成形工程, 2015, 7(4), 53.
52 Feng T. Research on the welding of SiCp/2024Al aluminum metal matrix composite. Ph.D Thesis. Shanghai Jiao Tong University, China, 2007 (in Chinese).
冯涛. SiCp/2024Al铝基复合材料的焊接. 博士学位论文, 上海交通大学, 2007.
53 Dinaharan I, Murugan N, Parameswaran S. Transactions of the Indian Institute of Metals, 2012, 65(2), 159.
54 Ceschini L, Boromei I, Minak G, et al. Composites Science & Technology, 2007, 67(3-4), 605.
55 Ni D R, Chen D L, Xiao B L, et al. International Journal of Fatigue, 2013, 55, 64.
56 Wang D, Xiao B L, Wang Q Z, et al. Materials & Design, 2013, 47, 243.
57 Prater T, Strauss A, Cook G, et al. Journal of Materials Engineering and Performance, 2013, 22(6), 1807.
58 Adesina A Y, Al-Badour F A, Gasem Z M. Journal of Manufacturing Processes, 2018, 33, 111.
59 Shindo D J, Rivera A R, Murr L E. Journal of Materials Science, 2002, 37(23), 4999.
60 Prado R A, Murr L E, Shindo D J, et al. Scripta Materialia, 2001, 45(1), 75.
61 Fernandez G J, Murr L E. Materials Characterization, 2004, 52(1), 65.
62 Prater T J, Strauss A M, Cook G E, et al. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44(8), 3757.
63 Prado R A, Murr L E, Soto K F, et al. Materials Science & Engineering A, 2003, 349(1-2), 156.
64 Fernandez R, Ibanez J, Cioffi F, et al. Science and Technology of Welding and Joining, 2017, 22(6), 526.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[10] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[11] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[12] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[13] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[14] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[15] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed