Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21020081-5    https://doi.org/10.11896/cldb.21020081
  无机非金属及其复合材料 |
风积沙3D打印砂浆材料参数与各向异性研究
周港明1, 杭美艳1,*, 路兰2, 王浩1, 蒋明辉1
1 内蒙古科技大学土木工程学院,内蒙古 包头 014010
2 杭州冠力智能科技有限公司,杭州 311200
Material Parameters and Anisotropy Research of 3D Printing Mortar After Incorporating with Aeolian Sand
ZHOU Gangming1, HANG Meiyan1,*, LU Lan2, WANG Hao1, JIANG Minghui1
1 School of Civil Engineering,Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 Hangzhou Guanli Intelligent Technology Co., Ltd., Hangzhou 311200, China
下载:  全 文 ( PDF ) ( 4916KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过前期的大量研究,得到两组风积沙3D打印砂浆配合比,对其材料参数进行了3D打印测试,并对打印试件进行了各向异性研究。结果表明:与基准配合比的试件相比,两组风积沙3D打印砂浆的打印性能较优,28 d抗折强度略低于基准组,抗压强度略高于基准组。当打印工艺参数相同时,试件的各向异性存在一致的规律,材料配比不同,各向异性离散程度也不同,且随着龄期的不同发生改变。通过SEM观察纤维界面、骨料界面的黏结状态,发现聚丙烯纤维表面较为光滑,与水泥石的黏结较差;风积沙表面附着更多的水化产物,与水泥石的黏结较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周港明
杭美艳
路兰
王浩
蒋明辉
关键词:  风积沙  3D打印  工作性能  力学性能  各向异性    
Abstract: On the basis of a lager number of the previous research, the mix proportions of two groups of aeolian sand 3D printing mortar were obtained, the material parameters were tested by 3D printing test, and the anisotropy of printed specimens was studied in this study. The results indicated that the 3D printing mortar of the two groups of aeolian sand showed better printing performance, the flexural strength of mortar after curing for 28 d was slightly lower than that of the reference group 3D printing mortar, the compressive strength of mortar was sligthtly higher than that of the reference group 3D printing mortar. Meanwhile, when the printing process parameters of the materials were the same, the anisotropy of spe-cimens existed same law; when the material proportion was different, the dispersion degree of anisotropy was different and changed with different curing ages. Moreover, the bond state of fiber interface and aggregate interface was investigated by the scanning electron microscope (SEM) test, and the result showed that the surface of polypropylene fiber was smooth and the bond with cement stone was poor; the surface of aeolian sand attached to more hydration products, and it showed good bonding with cement stones.
Key words:  aeolian sand    3D printing    working performance    mechanical property    anisotropy
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TU526  
通讯作者:  hangmeiyan64@163.com   
作者简介:  周港明,2018年本科毕业于宿迁学院,内蒙古科技大学硕士研究生,主要从事建筑3D打印砂浆研究。
杭美艳,内蒙古科技大学硕士研究生导师,教授级高工,2003年毕业于西安建筑科技大学,结构工程硕士。主要从事混凝土外加剂、超高性能混凝土、固体废弃物应用等方面的研究。在国内外重要期刊发表文章60多篇,发表专著四本,申报发明专利四项。
引用本文:    
周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
ZHOU Gangming, HANG Meiyan, LU Lan, WANG Hao, JIANG Minghui. Material Parameters and Anisotropy Research of 3D Printing Mortar After Incorporating with Aeolian Sand. Materials Reports, 2022, 36(9): 21020081-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020081  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21020081
1 Dong W, Shen X D. Chinese Journal of Silicate, 2013, 32(9),1900(in Chinese).
董伟,申向东.硅酸盐通报,2013,32(9),1900.
2 Bao J Q, Xing Y M, Liu L. Concrete and Cement Products, 2015(11),8(in Chinese).
包建强,邢永明,刘霖.混凝土与水泥制品,2015(11),8.
3 Wang J R, Liu Y, Ou Z W, et al. Contemporary Chemical Engineering, 2019, 48(10),2210(in Chinese).
王聚瑞,刘洋,欧忠文,等.当代化工,2019,48(10),2210.
4 Huo L, Lin X Q, Li X L,et al. Concrete, 2020(12),108(in Chinese).
霍亮, 蔺喜强, 李小龙, 等.混凝土, 2020(12),108.
5 Zhao H, Sun W, Wu X M, et al.Materials & Design,2012,40,109.
6 Ashraf W B, Noor M A.Procedia Engineering,2011,14, 2627.
7 Le T T, Austin S A, Lim S, et al.Materials and Structures,2012,45,1221.
8 Bos F, Wolfs R, Ahmed Z, et al. Virtual and Physical Prototyping,2016,11(3), 209.
9 Abdulrahman M A.Cement and Concrete Composites, 2009, 31(7), 470.
10 Ma G W, Li Z J, Wang L.Construction and Building Materials, 2018, 162, 613.
11 Liu Q L. Preliminary study on the preparation and Forming Technology of building mortar for 3D Printing. Master's Thesis, Tongji University, China, 2016(in Chinese).
刘巧玲. 用于3D打印的建筑砂浆制备与成型技术初步研究. 硕士学位论文, 同济大学, 2016.
12 Ma G W, Li Z J, Wang L, et al.Construction and Building Materials, 2019, 202, 770.
[1] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[2] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[3] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[4] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[5] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[6] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[7] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[8] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[9] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[10] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[11] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[12] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[13] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[14] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[15] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed