Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 21010189-8    https://doi.org/10.11896/cldb.21010189
  无机非金属及其复合材料 |
基于不同地域海砂的海水海砂混凝土力学性能试验研究
耿健智, 朱德举, 郭帅成, 易勇, 周琳林
湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
Experimental Study on Mechanical Properties of Seawater Sea-sand Concrete with Sea-sands from Different Regions
GENG Jianzhi, ZHU Deju, GUO Shuaicheng, YI Yong, ZHOU Linlin
Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 16569KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究选取山东、福建、广西三地原状海砂,测定了其物理和化学性质并与长沙本地河砂进行比较。结果表明,海砂的矿物组分、细度模数和压碎值与河砂基本相同,而不同地域海砂的氯离子和贝壳含量存在差异。采用不同地域的海砂和人工海水配制了C30、C40、C50强度等级的海水海砂混凝土(Seawater sea-sand concrete,SWSSC),测试了不同龄期海水海砂混凝土的抗压强度、弹性模量和劈裂抗拉强度等关键力学性能,并与普通混凝土(Ordinary concrete,OC)进行了对比, 采用XRD、SEM等手段研究了相关机理。结果表明,SWSSC早期(3 d和7 d龄期)抗压强度高于OC,但其后期(28 d龄期以后)抗压强度低于OC。两者抗拉强度的差异随着龄期增长不断减小, 而SWSSC的360 d抗拉强度基本高于OC。最后通过1H NMR分析比较了不同龄期的SWSSC和OC的孔结构,发现SWSSC和OC的孔结构发展规律与其力学性能发展规律一致。本研究成果可为海水海砂混凝土的配合比设计和工程应用提供重要依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿健智
朱德举
郭帅成
易勇
周琳林
关键词:  海水海砂混凝土  力学性能  孔结构    
Abstract: This study selected theoriginal sea sands from Shandong, Fujian and Guangxi Provinces, and characterized their physical and chemical properties, which were further compared with the river sand from Changsha. It is indicated that the mineral composition, fineness modulus and crushing value of sea sands are almost same as the river sand. Meanwhile, the chloride and shell contents of the sea sands from different regions are different. Then the seawater sea-sand concrete (SWSSC) samples with three different strength grades (C30, C40 and C50) were prepared with these sea sands from different regions and the artificial seawater. The mechanical tests were conducted to obtain the key mechanical properties, including compressive strengths, elastic modulus and splitting tensile strength, etc., which were also compared with the ordinary concrete (OC). Then the related mechanism was studied with the help of XRD and SEM. The results showed that the early-age (3 d and 7 d curing age) compressive strengths of the SWSSC were higher than those of the ordinary concrete (OC), while their late-age (after 28 d curing age) compressive strengths were lower than those of OC. The difference in tensile strengths of SWSSC and OC gradually decreased with the increa-sing curing age, and the tensile strengths of SWSSC with 360 d curing age were still higher than that of OC. Finally, the pore structures of SWSSC and OC with different ages were analyzed by the 1H NMR test. The development of pore structures in SWSSC and OC were consistent with that of mechanical properties. This study can provide important support for the mix design and engineering application of SWSSC.
Key words:  seawater sea-sand concrete    mechanical property    pore structure
发布日期:  2022-02-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U1806225);湖南省高新技术产业科技创新引领计划项目(2020GK2079);湖湘高层次人才聚集工程-创新人才(2018RS3057)
通讯作者:  dzhu@hnu.edu.cn   
作者简介:  耿健智,湖南大学土木工程学院硕士研究生,在朱德举教授的指导下进行研究。目前主要研究领域为海水海砂混凝土的力学性能。
朱德举,湖南大学教授,博士研究生导师。在高性能织物增强水泥基复合材料、纤维增强树脂基复合材料(复材)和海水海砂混凝土及海洋环境中的复材筋增强混凝土结构、生物材料和仿生材料的多尺度力学行为及仿生设计与制备等交叉领域进行了深入系统的研究。近五年来,主持国家级和省部级科研项目10项。发表SCI/EI文章90余篇,英文著作章节四篇。曾获日本混凝土学会期刊Journal of Advanced Concrete Technology最佳论文奖。国际学术期刊Journal of Sustainable Cement-Based Materials编委,中国复合材料学会土木工程复合材料分会委员,Cement and Concrete Composites等20余个国际权威期刊的审稿人。
引用本文:    
耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
GENG Jianzhi, ZHU Deju, GUO Shuaicheng, YI Yong, ZHOU Linlin. Experimental Study on Mechanical Properties of Seawater Sea-sand Concrete with Sea-sands from Different Regions. Materials Reports, 2022, 36(3): 21010189-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010189  或          http://www.mater-rep.com/CN/Y2022/V36/I3/21010189
1 Etxeberria M, Fernandez J M, Limeira J. Construction and Building Materials, 2016, 113, 586.
2 Limeira J, Etxeberria M, Agulló L, et al. Construction and Building Materials, 2011, 25(11), 4165.
3 Katz A, Baum H. ACI Materials Journal, 2006, 103(6), 474.
4 Hasdemir S, Tugrul A, Yılmaz M. Construction and Building Materials, 2016, 112, 940.
5 Yi Y, Zhu D, Guo S, et al. Cement and Concrete Composites, 2020, 113, 103695.
6 Xiao J, Zhang Q, Zhang P, et al. Structural Concrete, 2019, 20(5), 1631.
7 Guo M, Hu B, Xing F, et al. Construction and Building Materials, 2020, 234, 117339.
8 Liu W, Xie Y J, Dong B Q, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(1), 15(in Chinese).
刘伟,谢友均,董必钦,等. 硅酸盐通报,2014, 33(1), 15.
9 Kaushik S K, Islam S. Cement and Concrete Composites, 1995, 17(3), 177.
10 Mohammed T U, Hamada H, Yamaji T. Cement and Concrete Research, 2004, 34(4), 593.
11 Chandrakeerthy S R. In: Transactions, Institution of Engineers. Sri Lanka, 1994, pp.93.
12 Girish C G, Tensing D, Priya K L. International Journal of Engineering Sciences and Energing Technologies, 2015, 8(3), 88.
13 Yang E, Kim M, Park H, et al. Construction and Building Materials, 2010, 24(5), 758.
14 Xiao J Z, Zhang P, Zhang Q T, et al. Journal of Architecture and Civil Engineering, 2018, 35(2), 16(in Chinese).
肖建庄,张鹏,张青天,等. 建筑科学与工程学报, 2018, 35(2), 16.
15 Manigandan R, Srinivasan V, Pazhani K C. Asian Journal of Engineering and Applied Technology, 2018, 7(S1), 1.
16 Dhondy T, Remennikov A, Asce M, et al. Journal of Materials in Civil Engineering, 2020, 32(12), 04020392.
17 Li N, Farzadnia N, Shi C. Cement and Concrete Research, 2017, 100, 214.
18 Liu W, Cui H, Dong Z, et al. Construction and Building Materials, 2016, 120, 1.
19 Thaulow N, Sahu S. Materials Characterization, 2004, 53(2-4), 123.
20 Zang W J, Guo L P, Cao Y Z, et al. Materials Reports B:Research Papers, 2019, 33(4), 1317(in Chinese).
臧文洁,郭丽萍,曹园章. 材料导报:研究篇, 2019, 33(4), 1317.
21 Yu Q L, Yang T H, Tang C A, et al. Journal of Building Materials, 2009, 12(6), 643(in Chinese).
于庆磊,杨天鸿,唐春安,等.建筑材料学报,2009, 12(6), 643.
22 Dobiszewska M, Schindler A K, Pichór W. Construction and Building Materials, 2018, 177, 222.
23 Xue C Z, Shen A Q, Guo Y C. Materials Reports B:Research Papers, 2019, 33(4), 1348(in Chinese).
薛翠真,申爱琴,郭寅川. 材料导报:研究篇, 2019, 33(4), 1348.
24 Zang W J. Study on the interaction of cementitious materials and various aggressive media in the south China sea environment. Master's Thesis, Southeast University, China, 2018(in Chinese).
臧文洁. 南海环境多种侵蚀性介质与水泥基材料的交互作用研究. 硕士学位论文, 东南大学, 2018.
25 Liu J P, Liu Y J, Shi L, et al. Journal of Building Materials, 2016, 19(6), 993(in Chinese).
刘加平,刘玉静,石亮,等.建筑材料学报, 2016, 19(6), 993.
[1] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[2] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[3] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[4] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[5] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[6] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[7] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[8] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[9] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[10] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[11] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[12] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[13] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[14] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[15] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed