Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20090161-5    https://doi.org/10.11896/cldb.20090161
  金属与金属基复合材料 |
热处理对铁基中熵合金微观结构及力学性能的影响
赵燕春1, 李暑1, 李春玲2, 赵鹏彪1, 李文生1, 寇生中1, 阎峰云1
1 兰州理工大学省部共建有色金属加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学机电工程学院,兰州 730050
Effect of Heat Treatment on Microstructure and Properties of Iron-based Medium-entropy Alloys ZHAO Yanchun1,, LI Shu1, LI Chunling2, ZHAO Pengbiao1, LI Wensheng1, KOU Shengzhong1, YAN Fengyun1
medium-entropy alloys, heat treatment, structure, mechanical property
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 College of Mechano-Electronic Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 3675KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以水冷铜坩埚磁悬浮熔炼-铜模负压吸铸法制备了Fe77.3-xMnxSi9.1Cr9.8C3.8(x=14,23)中熵合金,研究了不同时间高温热处理对其微观组织及压缩力学性能的影响。结果表明:Fe77.3-xMnxSi9.1Cr9.8C3.8中熵合金均为低层错能合金;Fe63.3Mn14Si9.1Cr9.8C3.8在热处理前后均为单一的FCC结构;Fe54.3Mn23Si9.1Cr9.8C3.8铸态合金为FCC+HCP双相组织,在1 100 ℃淬火处理中HCP转变为FCC结构。Fe77.3-xMnxSi9.1Cr9.8C3.8中熵合金的综合力学性能在保温时间为20 min时达到最佳;Fe63.3Mn14Si9.1Cr9.8C3.8热处理后断裂强度和塑性分别可达3 250 MPa和24.5%,其断口形貌中河流花样密集,断口中心区域韧窝密集均匀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵燕春
李暑
李春玲
赵鹏彪
李文生
寇生中
阎峰云
关键词:  中熵合金  热处理  结构  力学性能    
Abstract: Fe77.3-xMnxSi9.1Cr9.8C3.8 medium-entropy alloys were prepared by water-cooled copper crucible magnetic levitation melting-copper mold ne-gative pressure suction casting method, and the effect of quenching at 1 100 ℃ for different time on microstructure and mechanical properties of the alloys was studied. The results show that the Fe77.3-xMnxSi9.1Cr9.8C3.8 medium-entropy alloys are all low stacking fault energy alloys, the structure of the Fe63.3Mn14Si9.1Cr9.8C3.8 alloy is a single FCC structure before and after heat treatment, the structure of the as-cast Fe54.3Mn23-Si9.1Cr9.8C3.8 alloy is FCC and HCP dual-phase structure, and the HCP structure is transformed into FCC structure during quenching at 1 100 ℃. The comprehensive mechanical properties of the Fe77.3-xMnxSi9.1Cr9.8C3.8 medium-entropy alloys are the best when the holding time is 20 min. The fracture strength and plasticity of the Fe63.3Mn14Si9.1Cr9.8C3.8 alloy after heat treatment are respectively 3 250 MPa and 24.5%, and the river pattern is dense in the fracture morphology, and the dimples in the central region of the fracture surface are dense and uniform.
Key words:  medium-entropy alloys    heat treatment    structure    mechanical property
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金项目(52061027;51661017); 甘肃省杰出青年基金项目(17JR5RA108); 兰州理工大学红柳优秀青年基金项目(2018)
通讯作者:  zhaoyanchun@lut.edu.cn   
作者简介:  赵燕春,兰州理工大学教授,2005—2010年在兰州理工大学获得冶金物理化学专业工学硕士学位和材料加工工程专业工学博士学位,毕业后留校任教至今。其中2019—2020年赴美国田纳西大学诺克斯维尔分校材料系访学,科研工作主要从事金属凝固原理、非晶和高熵合金等领域开发研究,在国内外学术期刊发表论文70余篇,主持了国家自然科学基金、教育部博士点新教师基金、甘肃省杰出青年基金等课题10余项,以第一完成人获省自然科学三等奖。
引用本文:    
赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
medium-entropy alloys, heat treatment, structure, mechanical property. Effect of Heat Treatment on Microstructure and Properties of Iron-based Medium-entropy Alloys ZHAO Yanchun1,, LI Shu1, LI Chunling2, ZHAO Pengbiao1, LI Wensheng1, KOU Shengzhong1, YAN Fengyun1. Materials Reports, 2022, 36(1): 20090161-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090161  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20090161
[1] Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
[2] Ma Y F, Gong P, Li F W, et al. Rare Metal Materials and Engineering, 2020, 49(4), 1445(in Chinese).
马云飞, 龚攀, 李方伟, 等.稀有金属材料与工程,2020,49(4),1445.
[3] Qiao J C, Wang Q, Pelletier J M, et al. Progress in Materials Science, 2019, 104, 250.
[4] Tan Y Q, Wang X M, Zhu S, et al. Materials Reports A:Review Papers, 2020, 34(5), 5120(in Chinese).
谭雅琴, 王晓明, 朱胜, 等. 材料导报:综述篇,2020,34(5),5120.
[5] Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 3345(6201),1153.
[6] Sathiyamoorthi P, Asghari-Rad P, Bae J W, et al. Intermetallics, 2019, 113,106578.
[7] Gludovatz B, Hohenwarter A, Thurston K V S, et al. Nature Communications, 2016, 7, 10602.
[8] Okamoto N L, Fujimoto S, Kambara Y, et al. Scientific Reports, 2016, 6, 35863.
[9] Zhao Y C, Sun H, Li C L, et al. Acta Metallurgica Sinica, 2018, 54(12), 1818(in Chinese).
赵燕春, 孙浩, 李春玲, 等.金属学报, 2018, 54(12), 1818.
[10] Li A M, Shi J Z, Xie M K. Materials Reports A:Review Papers, 2018,32(3),461(in Chinese).
李安敏, 史君佐, 谢明款.材料导报:综述篇, 2018,32(3),461.
[11] Xia F, Cheng H, Tang Q H, et al. Hot Working Technology, 2018, 47(8),44(in Chinese).
夏凡, 程虎, 唐前辉, 等. 热加工工艺, 2018, 47(8), 44.
[12] Xie Z M, Rao H C, Wang H Y, et al. Hot Working Technology, 2017,46(4), 226(in Chinese).
谢志敏, 饶湖常, 王海燕, 等.热加工工艺, 2017, 46(4),226.
[13] Li S Y, Wang H, Peng Y L, et al. Journal of Xi'an Technological University, 2020, 40(1), 95(in Chinese).
李双元, 王宏, 彭渝丽, 等. 西安工业大学学报, 2020, 40(1), 95.
[14] Warren B E, Warekois E P. Acta Metallurgica, 1955, 3(5),473.
[15] Zhang W F, Chen Y M, Zhu J H. Journal of Materials Engineering, 2000(2),25(in Chinese).
张旺峰, 陈瑜眉, 朱金华. 材料工程, 2000(2),25.
[16] Dai Q X, Huo S P, Chen Y Y. Journal of Jiangsu University (Natural Science Edition), 1993(4),111(in Chinese).
戴起勋, 火树鹏, 陈原野. 江苏大学学报(自然科学版), 1993(4), 111.
[17] Dumay A, Chateau J P, Allain S, et al. Materials Science and Enginee-ring A, 2008, 483-484,184.
[18] Olson G B, Cohen M. Metallurgical and Materials Transactions A, 1976, 7(12),1897.
[19] Huang B X, Wang X D, Rong Y H, et al. Heat Treatment, 2005, 20(4), 4(in Chinese).
黄宝旭, 王晓东, 戎咏华, 等. 热处理, 2005, 20(4), 4.
[20] Zhao Y C, Mao X J, Li W S, et al. Acta Metallurgica Sinica, 2020, 56(5), 715(in Chinese).
赵燕春, 毛雪晶, 李文生, 等. 金属学报, 2020, 56(5), 715.
[21] Saeed-Akbari A, Imlau J, Prahl U, et al. Metallurgical and Materials Transactions A, 2009, 40(13),3076.
[22] Hui Y J, Yu Y, Wang C, et al. Transactions of Materials and Heat Treatment, 2014, 35(12), 140(in Chinese).
惠亚军, 于洋, 王畅, 等. 材料热处理学报, 2014, 35(12), 140.
[1] 杜益嘉, 王盼, 肖诚禹, 唐道远, 徐建明, 周涵. 基于外场调控的智能热控超材料[J]. 材料导报, 2022, 36(2): 20110075-6.
[2] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[3] 杜军, 蒋敏博, 张永恒, 徐思远, 魏正英. TIG电弧复合熔滴沉积增材制造45钢/铅合金双金属结构工艺研究[J]. 材料导报, 2022, 36(2): 20100016-5.
[4] 张华炜, 刘悦, 范同祥. 铸造耐热铝合金的研究进展及展望[J]. 材料导报, 2022, 36(2): 20120048-9.
[5] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[6] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[7] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[8] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[9] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[10] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[11] 宋庆功, 常斌斌, 董珊珊, 顾威风, 康建海, 王明超, 刘志锋. 机器学习及其在材料研发中的作用[J]. 材料导报, 2022, 36(1): 20080139-7.
[12] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[13] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[14] 王小玉. 四氧化三钴纳米材料制备路线的研究进展[J]. 材料导报, 2021, 35(z2): 64-67.
[15] 张凯, 高本征, 龚旻, 罗波, 范锦鹏. 软模板法制备六瓣状氧化铝微米片[J]. 材料导报, 2021, 35(z2): 68-71.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed