Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20090223-7    https://doi.org/10.11896/cldb.20090223
  金属与金属基复合材料 |
先进液态金属电池熔盐电解质的设计
王心桥, 张健, 苏彤, 赵兴, 郭永权
华北电力大学能源动力与机械工程学院,北京 102206
Design of Advanced Performance Halide Molten Salt Electrolytes for Liquid Metal Battery
WANG Xinqiao, ZHANG Jian, SU Tong, ZHAO Xing, GUO Yongquan
School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
下载:  全 文 ( PDF ) ( 4571KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作系统研究了液态金属电池多元熔融盐电解质体系的优化,利用X-射线衍射和扫描电镜系统研究四组元卤族熔盐电解质的相结构和微观组织,利用 Rietveld结构精修方法测定各相的晶体结构;利用差示扫描量热法测定四组元熔盐电解质的熔化温度;建立离子钢球模型计算熔盐密度和负极金属在熔融电解质中的溶解度,发现实验值与理论值相符。通过成分和性能优化获得低熔点、低溶解度的熔盐电解质体系:0.232LiCl-0.08LiBr-0.488LiI-0.2KI和0.203LiCl-0.07LiBr-0.427LiI-0.3KI。其熔化温度约为260 ℃,明显低于目前已开发的电解质,有望拓宽液态金属电池工作温区,减少能耗。经计算,当工作温度为400 ℃时,负极金属Li、Na在优化的两种熔盐体系中的溶解度分别约为0.2% 和 0.9%,有利于提高电池的效率;熔盐电解质的密度为2.67~2.68 g/cm3,介于液态阴极和阳极的密度之间,可稳定阴极/电解质/阳极层结构;离子电导率大于1.0 S/cm,符合液态金属电池对熔融盐电解质性能的要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王心桥
张健
苏彤
赵兴
郭永权
关键词:  液态金属电池电解质  熔融盐  碱金属卤化物  密度  溶解度    
Abstract: The study is focused on the improvement of multiple alkali metal halide molten salt electrolytes for liquid metal battery. The X-ray diffraction and scanning electron microscopy are used to check the various phases, phase structures and microstructures in the quaternary system of alkali metal halide molten salt electrolytes in this study. The crystal structures of molten salts are determined with a Rietveld method. The melting points of molten salts are measured by differential scanning calorimetry. The density of molten salt and the solubility of metal cation in molten electrolyte are theoretically investigated with a rigid model, the calculated values fit the experimental ones well. The two advanced performance molten salts with compositions of 0.232LiCl-0.08LiBr-0.488LiI-0.2KI and 0.203LiCl-0.07LiBr-0.427LiI-0.3KI are obtained with properties of low melting point and low solubility by composition and performance optimization. The melting temperature is around 260 ℃,which is beneficial for reducing the running temperature and energy consumption. At the operating temperature of 400 ℃, the metal solubility in two molten electrolyte is about 0.2% for Li and 0.9% for Na, respectively, which is helpful for improving the efficiency of the batteries. The density of molten salt electrolyte is 2.67—2.68 g/cm3, which is between the density of liquid cathode and anode. It can stabilize the structure of cathode/electrolyte/anode three layers and separate the cathode and anode. The ionic conductivity is predicted to be more than 1.0 S/cm. The conductivity of molten salt electrolyte meets the requirement of liquid metal battery.
Key words:  liquid metal battery electrolyte    molten salts    alkali metal halide    density    solubility
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TB32  
基金资助: 国家重点研发计划(2018YFB0905601)
通讯作者:  yqguo@ncepu.edu.cn   
作者简介:  王心桥,华北电力大学,硕士研究生。2014年9月至2018年6月,在华北电力大学获得学士学位。2018年9月至今,在华北电力大学攻读硕士学位。
郭永权,华北电力大学,教授。主要研究方向为稀土磁性功能材料、磁电子和光电子功能材料及储能材料。1996年8月在中科院物理所取得博士学位;1996—1998年在清华大学从事博士后研究。在国内外知名杂志发表论文120余篇,被SCI正面引用1 250余次。
引用本文:    
王心桥, 张健, 苏彤, 赵兴, 郭永权. 先进液态金属电池熔盐电解质的设计[J]. 材料导报, 2022, 36(1): 20090223-7.
WANG Xinqiao, ZHANG Jian, SU Tong, ZHAO Xing, GUO Yongquan. Design of Advanced Performance Halide Molten Salt Electrolytes for Liquid Metal Battery. Materials Reports, 2022, 36(1): 20090223-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090223  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20090223
[1] Wang S C, Lai X K, Cheng S J, et al. Automation of Electric Power Systems, 2014, 37(1), 3(in Chinese).
王松岑, 来小康, 程时杰.电力系统自动化, 2013, 37(1), 3.
[2] Weier T, Bund A, El-Mofid W, et al. IOP Conference Series: Materials Science and Engineering, 2017, 228, 012013.
[3] Jiang K, Li H M, Li W, et al. Automation of Electric Power Systems, 2013(1), 47(in Chinese).
蒋凯, 李浩秒, 李威,等. 电力系统自动化, 2013(1), 47.
[4] Jiang Z A, Hua Y X, Yang J H, et al. Power Source Technology, 2017(8), 1213(in Chinese).
姜治安, 华一新, 杨建红, 等. 电源技术, 2017(8), 1213.
[5] Peng B, Guo J J, Zhang K, et al. Power Source Technology, 2017(3), 498(in Chinese).
彭勃, 郭姣姣, 张坤,等. 电源技术, 2017(3), 498.
[6] Li Z H, Zhu F F, Li H M. Energy Storage Science and Technology, 2017(5), 981(in Chinese).
黎朝晖, 朱方方, 李浩秒. 储能科学与技术, 2017(5), 981.
[7] Kim H, Boysen D A, Newhouse J M, et al. Chemical Reviews, 2013, 113(3), 2075.
[8] Blomgren G E. Journal of Power Sources, 2003, 121, 326.
[9] Kim J, Shin D, Jung Y, et al. Journal of Power Sources,2018,377,87.
[10] Xu J, Kjos O S, Osen K S, et al. Journal of Power Sources, 2016, 332, 274.
[11] Ning X, Phadke S, Chung B, et al. Journal of Power Sources, 2015, 275, 370.
[12] Li H, Wang K, Cheng S, et al. ACS Applied Materials & Interfaces, 2016, 8, 12830.
[13] Wang K L, Jiang K, et al. Nature, 2014, 514, 348.
[14] Kim H, Boysen D A, Ouchi T, et al. Journal of Power Sources, 2013, 241, 239.
[15] Ue M, Uosaki K. Surface Electrochemistry. 2019, 17, 106.
[16] Zhang Y, Liu B, Zhao X L, et al. Aerospace Shanghai, 2015, 32(4), 71(in Chinese).
张艳, 刘波, 赵小玲,等. 上海航天, 2015, 32(4), 71.
[17] Masset P, Guidotti R A. Journal of Power Sources, 2007, 164(1), 397.
[18] Vissers D R, Redey L, Kaun T D. Journal of Power Sources, 1988, 26(2), 37.
[19] Zhang Y S, Zhao M S, Tang D R, et al. Acta Chimica Sinica, 1990, 48(7), 644(in Chinese).
张英珊, 赵敏寿, 唐定骧,等. 化学学报, 1990, 48(7), 644.
[20] Rudo K, Hartwig P, Weppner W. Revue de Chimie Minérale, 1980, 17(4), 420.
[21] Janz, George J. Molten salts handbook, Academic Press, UK, 1967.
[22] Fujiwara S, Inaba M, Tasaka A. Journal of Power Sources, 2010, 195(22), 7691.
[23] Fujiwara S, Inaba M, Tasaka A. Journal of Power Sources, 2011, 196(8), 4012.
[24] Masset P, Guidotti R A. Journal of Power Sources, 2007, 164(1), 397.
[25] Masset P, Henry A, Poinso J Y, et al. Journal of Power Sources, 2006, 160, 752.
[26] Yaffe I S, Artsdalen B R V. Journal of Physical Chemistry, 1956, 60(8), 1125.
[27] Wu W H, Lin C C, Yang C C. Journal of Applied Electrochemistry, 2004, 34, 525.
[1] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[2] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[3] 邓德伟, 吕捷, 马玉山, 张勇, 黄治冶. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 8127-8133.
[4] 梁捷, 耿佃桥, 张群. 固液密度比对PMMA/HDPE悬浮液粘度的影响[J]. 材料导报, 2021, 35(4): 4181-4185.
[5] 张静茹, 张志昂, 韩笑, 房蕊, 徐若歆, 赵丽丽. 提高PVDF基有机-无机柔性复合膜储能密度的研究新进展[J]. 材料导报, 2021, 35(23): 23162-23170.
[6] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[7] 武文浩, 郭莉, 张志, 宋江锋, 陈长安, 王广西. 液态锂铅合金中氢同位素测量研究进展[J]. 材料导报, 2021, 35(19): 19125-19133.
[8] 杨慧, 童莉葛, 尹少武, 王立, 汉京晓, 唐志伟, 丁玉龙. 水合盐热化学储热材料的研究概述[J]. 材料导报, 2021, 35(17): 17150-17162.
[9] 章小峰, 李家星, 万亚雄, 武学俊, 黄贞益. 退火工艺对冷轧中锰中铝低密度钢组织与性能的影响[J]. 材料导报, 2021, 35(16): 16099-16103.
[10] 闫朋朋, 苏伟, 韦小凤, 朱学卫, 王府. 碳负载氮掺杂纳米碳化钨电催化剂的制备及析氢性能[J]. 材料导报, 2021, 35(14): 14007-14011.
[11] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[12] 杜颖妍, 陈婷, 贾倩, 李越, 毋志民. 新型稀磁半导体Mn掺LiBeP的磁电性质调控[J]. 材料导报, 2021, 35(10): 10013-10016.
[13] 孙强, 黄苏起, 蔡著文, 党卫东, 吴晓春. 两种热冲压模具用钢的抗拉毛性能[J]. 材料导报, 2021, 35(10): 10152-10157.
[14] 宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
[15] 查林. D3-C32X2(X=H, Cl)的电子结构、核磁共振及振动光谱理论研究[J]. 材料导报, 2020, 34(Z1): 103-106.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed