Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19125-19133    https://doi.org/10.11896/cldb.20060032
  金属与金属基复合材料 |
液态锂铅合金中氢同位素测量研究进展
武文浩1,2, 郭莉2, 张志2, 宋江锋2, 陈长安2, 王广西1
1 成都理工大学核技术与自动化工程学院,成都 610200
2 中国工程物理研究院材料研究所,江油 621700
Research Progress of Hydrogen Isotope Solubility Measurement in Liquid Li-Pb Alloy
WU Wenhao1,2, GUO Li2, ZHANG Zhi2, SONG Jiangfeng2, CHEN Chang'an2, WANG Guangxi1
1 College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610200, China
2 Institute of Materials, China Academy of Engineering Physics, Jiangyou 621700, China
下载:  全 文 ( PDF ) ( 3992KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 液态锂铅合金可兼作中子倍增剂、氚增殖剂以及冷却剂,因此液态锂铅合金包层被认为是一种在示范堆(DEMO)或聚变电站中颇有应用前景的增殖包层设计。为了连续监测锂铅增殖包层模块中氚的输运情况,准确、快速测量液态增殖剂的产氚率,需要实时在线测量流动液态增殖剂中氢同位素的浓度。
现有传感器都是通过一定手段测定液态金属中的氢分压,然后代入Sieverts定律计算氢同位素浓度,其中氢同位素溶解度系数与同位素浓度的准确测量息息相关。目前氢溶解度系数测量方法主要分为定容法和渗透法,各团队对锂铅合金中氢同位素溶解度系数的测定数值差异较大。一方面由于氢同位素在液态锂铅合金中的溶解度极低,实验误差的影响不可忽视;另一方面杂质效应也会导致溶解度系数的差异,来自空气、水、CO中的氧会引入到锂铅中形成Li2O,而与氧的反应会消耗液态锂铅合金中的Li,使Li活性降低,进而降低氢同位素的溶解度,因此氧含量以及其他杂质的控制对于锂铅合金的实际应用至关重要。
近几年已开发的液态锂铅中氢同位素在线测量传感器主要包括金属渗透窗传感器和固体电解质传感器。金属渗透窗传感器结构简单,可靠性高,研究者们主要从材料选择和器件结构优化等方面不断尝试,并取得了丰硕的成果。目前的研究证实了动态测量模式在液态锂铅中氢同位素浓度快速在线测量方面的可行性,需解决的问题是如何避免金属探头材料的氧化,保证长期工作的稳定性。固体电解质测氢传感技术相对成熟,但陶瓷材料韧性较差,测试时需要通入参考气体,并且在器件结构设计和材料选择方面要求更高。还有一些液态金属在线测氢技术,探头采用多孔陶瓷来收集气体,主要用于铝液中氢浓度的测量。对于液态锂铅合金测氢,仍需探索材料的发气性与锂铅材料的相容性,以及对锂铅中极低氢同位素浓度测量的可行性。
本文首先论述了影响氢同位素在液态锂铅合金中溶解度的因素,然后综述了液态锂铅合金中氢同位素溶解度系数的研究进展,包括其原理和研究方法,讨论了不同方法测量数值的差异。此外,本文对在线测量液态锂铅合金中氢同位素浓度传感器的研究进行了概述。最后,对在线测量液态锂铅合金中氢同位素浓度传感器的器件优化和未来发展方向作出了评价。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武文浩
郭莉
张志
宋江锋
陈长安
王广西
关键词:  液态锂铅合金  氢同位素  溶解度  在线测量  传感器    
Abstract: Liquid Li-Pb alloy can be used as neutron multiplier, tritium breeder and coolant. Therefore, the liquid Li-Pb alloy cladding is considered as a kind of breeder cladding which has a good prospect in DEMO or fusion power plants. In order to monitor the tritium transportation continuously in Li-Pb breeder cladding module and measure the tritium production rate of the liquid breeder accurately, we need to measure the concentration of hydrogen isotopes on-line in the flowing liquid breeder.
The mechanism of the existing sensor is that, to measure the partial pressure of hydrogen in liquid metal by some means, and then to use the Sieverts law for calculation. Especially, the solubility coefficient of hydrogen isotopes is closely related to the accurate measurement of isotope concentration in liquid Li-Pb alloy. At present, the measurement values of hydrogen isotopes solubility coefficient of Li-Pb alloy by teams are quite different. On one hand, due to the extremely low solubility of hydrogen isotopes in liquid Li-Pb alloy, the influence of experimental error cannot be ignored; on the other hand, impurity effect will lead to the difference of solubility coefficient. Oxygen from air, water, CO will be introduced into Li-Pb to form Li2O. The reaction with oxygen will consume Li in liquid Li-Pb, which will lead to the decrease of Li activity and the solubility. Therefore, the content control of oxygen or other impurities is important for the practical application of Li-Pb.
In recent years, the liquid Li-Pb hydrogen isotope sensors for on-line measurement mainly include metal permeation based sensor and solid electrolyte sensor. The former sensor has simple structure and high reliability. Researchers have made great achievements in material selection and device structure optimization. The current study has confirmed the feasibility of the dynamic measurement mode in the rapid on-line measurement of hydrogen isotope concentration in liquid Li-Pb. Nevertheless the problem to be solved is how to avoid the oxidation of metal probe mate-rials and ensure the stability of long-term work. The solid electrolyte hydrogen sensing technology is relatively mature, but reference gas needs to be introduced during the test, and the toughness of ceramic materials is poor, which requires higher requirements in device structure design and material selection. There are also some on-line hydrogen measurement technology of liquid metal. The probe uses porous ceramics to collect gas, which is mainly used for the measurement of hydrogen concentration in liquid aluminum. For the measurement of hydrogen in liquid Li-Pb alloy, we still need to explore the gas evolution of the material, the compatibility with Li-Pb alloy, and the feasibility of the measurement of very low hydrogen isotope concentration in Li-Pb.
In this paper, the factors that affect the solubility of hydrogen isotopes in liquid Li-Pb alloy are briefly introduced, and then the study progress of the solubility coefficient of hydrogen isotopes in liquid Li-Pb alloy is reviewed, including its principle,experimental method and the difference of measurement values by different methods is discussed. In addition, this paper summarizes the investigation on the hydrogen isotope concentration sensor in the liquid Li-Pb alloy. Finally, the device optimization and future development of the hydrogen isotope concentration sensor in the liquid Li-Pb alloy are evaluated.
Key words:  liquid Li-Pb alloy    hydrogen isotope    solubility    on line measurement    sensor
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TL62  
基金资助: 国家磁约束核聚变能发展研究专项(2015GB109004)
通讯作者:  10guoli@caep.cn; wangguangxi00@cdut.cn   
作者简介:  武文浩,现为成都理工大学和中国工程物理研究院材料研究所联合培养硕士研究生,在宋江锋副研究员及王广西教授指导下进行研究。目前主要研究领域为液态锂铅合金中氢同位素的溶解度测量。
郭莉,中国工程物理研究院材料研究所副研究员。2008年本科毕业于吉林大学微电子学专业,2013年在吉林大学微电子学与固体电子学专业取得博士学位。主要从事于液态锂铅合金与材料相容性、材料中氢同位素行为、聚变堆相关氚工艺及涉氚材料等领域研究。承担国际自然科学基金青年基金一项,参与国家磁约束核聚变能发展研究专项课题 “全增殖包层氚提取与产氚率测试技术研究”中液态铅锂合金氚测量技术研究,发表科技论文20余篇。
王广西,成都理工大学自动化与核技术工程学院教授、博士研究生导师。2006年本科毕业于成都理工大学测控技术与仪器专业,2012年在成都理工大学核资源与核勘查工程专业取得博士学位。曾主持国家自然科学基金面上项目-海底原位X荧光探测关键技术研究、国家863计划重大项目课题专题-阵列航空伽玛探测器的温度效应与数字化稳谱技术研究等。长期从事核仪器的硬、软件开发以及核技术在资源与环境等领域的应用研究工作。
引用本文:    
武文浩, 郭莉, 张志, 宋江锋, 陈长安, 王广西. 液态锂铅合金中氢同位素测量研究进展[J]. 材料导报, 2021, 35(19): 19125-19133.
WU Wenhao, GUO Li, ZHANG Zhi, SONG Jiangfeng, CHEN Chang'an, WANG Guangxi. Research Progress of Hydrogen Isotope Solubility Measurement in Liquid Li-Pb Alloy. Materials Reports, 2021, 35(19): 19125-19133.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060032  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19125
1 Jiang G Q, Luo D L, Lu G D, et al. Tritium and industry technologies of Tritium, National Defense Industry Press, China, 2007(in Chinese).
蒋国强, 罗德礼, 陆光达, 等. 氚和氚的工程技术, 国防工业出版社, 2007.
2 Federicia G, Bachmann C, Barucca L, et al. Fusion Engineering and Design, 2018, 136, 729.
3 Cowley S C. Nature Physics, 2016, 12, 384.
4 Federicia G, Bachmann C, Barucca L, et al. Nuclear Fusion, 2019, 59, 066013.
5 Ricapitoa I, Bede O, Boccaccini L V, et al. Fusion Engineering and Design, 2010, 85(7-9), 1154.
6 Salavy J F, Boccaccini L V,Lasser R, et al. Fusion Engineering and Design, 2007, 82(15-24), 2105.
7 Ying A,Abdou M A, Wong C P, et al. Fusion Engineering and Design, 2006, 81(1-7), 433.
8 Wu Y C, Team F D S. Nuclear Fusion, 2007, 47, 1533.
9 Abdou M A, Sze D, Wong C, et al. Fusion Science Technology, 2005, 47(3), 475.
10 Masuyama D, Oda T, Fukada S, et al. Chemical Physics Letters, 2009, 483(4-6), 214.
11 Fukada S, Edao Y. Journal of Nuclear Materials, 2011, 417(1-3), 727.
12 Kumar S, Taxak M, Krishnamurthy N, et al. In:2nd International conference on advances in nuclear materials. Singapore, 2011.
13 Wu C H, Blair A J. Fusion Technology, 1983, DOI:10.1016/B978-1-4832-8374-6.50100-3.
14 Reiter F. Fusion Engineering and Design, 1991, 14(3-4), 207.
15 Reiter F, Camposilvan J, Gervasini G, et al. Fusion Technology, 1986, DOI:10.1016/B978-1-4832-8376-0.50161-3.
16 Wu C H. Journal of Nuclear Materials, 1983,114(1), 30.
17 Katsuta H, Iwamoto H, Ohno H, et al. Journal of Nuclear Materials, 1985,133-134, 167.
18 Chan Y C, Veleckis E. Journal of Nuclear Materials, 1984, 122-123(1-3), 935.
19 Fauvet P, Sannier J. Journal of Nuclear Materials, 1988, 155-157(1), 516.
20 Caorlin M, Gervasini G, Reiter F, et al. Fusion Technology, 1988, 14, 663.
21 Bououdina M. International Journal of Hydrogen Energy, 2006, 31(2), 177.
22 Kumar S, Tirpude A, Krishnamurthy N, et al. International Journal of Hydrogen Energy, 2013, 38(14), 6002.
23 Kumar S, Singh K, Jain U, et al. Fusion Engineering and Design, 2014, 89(7-8), 1351.
24 Wiswall R. Topics in Applied Physics, 1978, 29, 201.
25 Aiello J, Ciampichetti A, Benamati G, et al. Fusion Engineering and Design, 2006, 81(1-7), 639.
26 Alberro G, Peñalva I, Legarda F, et al. Fusion Engineering and Design, 2015, 98-99, 1919.
27 Edao Y, Noguchi H, Fukada S, et al. Journal of Nuclear Materials, 2011, 417(1-3), 723.
28 Okitsu H, Edao Y, Okada M, et al. Fusion Engineering and Design, 2012, 87(7-8), 1324.
29 Sedano L A, Batet L, Ricapito I, et al. Journal of Nuclear Materials, 2008, 376(3), 353.
30 Hubberstey P. Journal of Nuclear Materials, 1997, 247, 208.
31 Okuno K, Kobayashi M, Yamanishi T, et al. Fusion Engineering and Design, 2013, 88(9-10), 2328.
32 Tosti S, Pozio A, Santucci A, et al. In: 2013 IEEE 25th Symposium on Fusion Engineering, 2013.
33 Ciampichetti A, Ricapito I, Benamati G, et al. Journal of Nuclear Materials, 2004, 329-333, 1332.
34 Ciampichetti A, Zucchetti M, Ricapito I, et al. Journal of Nuclear Materials, 2007, 367-370, 1090.
35 Candido L, Utili M, Zucchetti M, et al. Fusion Engineering and Design, 2017, 124, 735.
36 Livina L, Colominas S, Alberro G, et al. Fusion Engineering and Design, 2014, 89(7-8), 1209.
37 Xu Y C, Zhang Y G, Li X Y, et al. Journal of Nuclear Materials, 2019, 524, 200.
38 Yoon J S, Jung Y I, Dong W L, et al. IEEE Transactions on Plasma Science, 2018, 46(7), 2663.
39 Kondo M, Takahashi M, Tanaka T, et al. Fusion Engineering and Design, 2012, 87(10), 1777.
40 Sircar A. Fusion Engineering and Design, 2014, 89(7-8), 1223.
41 Candido L, Nicolotti I, Utili M, et al. IEEE Transactions on Plasma Science, 2017, 45(7), 1831.
42 Schober T, Ringel H. Ionics, 2004, 10, 391.
43 Wang C Z. Nonferrous Metals Processing, 2002, 31(2), 24(in Chinese).
王常珍. 有色金属加工, 2002, 31(2), 24.
44 Chen J X. On line continuous detection of hydrogen content in aluminum melt by concentration cell method. Ph.D. Thesis, Huazhong University of Science and Technology, China, 2017(in Chinese).
陈建勋. 铝熔体含氢量的浓差电池法在线连续检测技术研究. 博士学位论文, 华中科技大学, 2017.
45 Serret P, Colominas S, Reyes G, et al. Fusion Engineering and Design, 2011, 86(9-11), 2446.
46 Borland H, Llivina L, Abella J, et al. Fusion Engineering and Design, 2013, 88(9-10), 2431.
47 Llivina L, Colominas S, Reyes G, et al. Fusion Engineering and Design, 2012, 87(7-8), 979.
48 Llivina L, Colominas S, Abella J, et al. Fusion Engineering and Design, 2014, 89(7-8), 1397.
49 Liu D H, Zhang H W. Special Casting and Non-ferrous Alloy, 1998(1), 58(in Chinese).
刘东红, 章红卫. 特种铸造及有色合金, 1998(1), 58.
50 Weigel J, Fromm E. Metallurgical Transactions B, 1990, 21, 855.
51 Crepeau P N. Modern Casting, 1997, 87(7), 39.
52 Dong J F. Measurement and Testing Technology,2004, 31(5), 43(in Chinese).
董剑飞. 计量与测试技术, 2004, 31(5), 43.
53 Tan B Q, Zhang G D, Chen H Y, et al. Aluminum Fabrication, 2008(5), 30(in Chinese).
谭本清, 张国栋, 陈红云, 等. 铝加工, 2008(5), 30.
54 Anyalebechi P N. Light Metals, 1991, 3, 1025.
55 Xie B, Wu Y C. Nuclear Chemistry and Radiochemistry, 2012, 34(3), 179(in Chinese).
谢波, 吴宜灿. 核化学与放射化学, 2012, 34(3), 179.
56 Fukada S, Terai T, Konishi S, et al. Metallurgical Transactions B, 2013, 54(4), 425.
57 Smolentsev S, Morley N B, Abdou M A, et al. Fusion Engineering and Design, 2015, 100(4), 44.
[1] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[2] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[3] 门阔, 赵鸿滨, 魏峰, 魏千惠. 磁性传感材料与器件研究进展[J]. 材料导报, 2021, 35(15): 15056-15064.
[4] 张建华, 王朋厂, 杨连乔. 基于化学气相沉积石墨烯的传感器的研究进展[J]. 材料导报, 2021, 35(15): 15072-15080.
[5] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[6] 杨璐, 王泽方. 氮化硼量子点的制备及应用综述[J]. 材料导报, 2021, 35(1): 1058-1076.
[7] 金克霞, 江泽慧, 马建锋, 傅峰, 杨淑敏, 刘杏娥. 纤维素纳米晶基导电复合材料的应用进展[J]. 材料导报, 2020, 34(Z2): 521-524.
[8] 马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
[9] 张晓琳, 丰晓婷, 詹世平, 卢春兰, 李鸣明, 侯维敏. 基于双硫键的荧光传感器在生物检测及靶向治疗药物输送系统中的应用[J]. 材料导报, 2020, 34(5): 5142-5147.
[10] 程晓红, 代思思, 和平, 屈少华, 汪竞阳. 可依次检测汞、硫离子的双功能比色传感器的设计与研究[J]. 材料导报, 2020, 34(24): 24010-24013.
[11] 常胜男, 李津, 刘皓. 基于生物衍生材料的柔性应变/压力传感器的研究进展[J]. 材料导报, 2020, 34(19): 19173-19182.
[12] 张永芳, 王霞, 邢志国, 黄艳斐, 郭伟玲. 面向机械装备健康监测的振动传感器研究现状[J]. 材料导报, 2020, 34(13): 13121-13130.
[13] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[14] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[15] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed