Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19173-19182    https://doi.org/10.11896/cldb.19050179
  高分子与聚合物基复合材料 |
基于生物衍生材料的柔性应变/压力传感器的研究进展
常胜男1, 李津1, 刘皓1,2,3
1 天津工业大学纺织科学与工程学院,天津 300387
2 分离膜与膜过程国家重点实验室,天津 300387
3 天津工业大学智能可穿戴电子纺织品研究所,天津 300387
Research Progress of Flexible Strain/Pressure Sensors Based on
Biomaterial Derived Materials
CHANG Shengnan1, LI Jin1, LIU Hao1,2,3
1 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
2 State Key Laboratory of Separation Membranes and Membrane Process, Tianjin 300387, China
3 Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 8313KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近几年来,随着科技的发展和智能可穿戴技术的提升,智能可穿戴电子产品以其优异的性能吸引了研究者的目光。柔性应变/压力传感器作为柔性可穿戴电子产品的重要分支,可以贴合人体或集成到纺织品中,在医疗保健、人机交互、软机器人等领域具有巨大的应用潜力。
应变/压力传感器是将受到的外界刺激或机械变形(如拉伸和压缩等)转换成电学信号的一类电子器件,传感元件是应变/压力传感器的关键。摒弃了传统的基于刚性材料的应变/压力传感器,近几年来,层出不穷的新材料和新结构被应用于柔性应变/压力传感器中,包括金属纳米材料、导电高聚物和碳纳米材料(石墨烯、碳纳米管和炭黑材料)。这些新材料显著改善了传感器件的力学性能和柔韧性。但是复杂的制备工艺、高昂的材料成本以及未知的毒性限制了这些传感器在实际生活中的大规模应用,并且其传感性能也有待进一步提高。
自然界存在着丰富的生物材料,已经有许多生物材料运用于超级电容器、电池和传感器等电子领域。生物衍生材料所具有的低成本、易于获取、可持续性和生态友好性等优点,使其在柔性应变/压力传感器方向具有显著的吸引力。本文综述了基于生物衍生材料的柔性应变/压力传感器的研究进展,将该传感器分为三种类型,包括基于碳化生物材料的柔性应变/压力传感器、基于3D海绵材料的柔性应变/压力传感器和基于织物基底材料的柔性应变/压力传感器,并结合实例总结了它们在材料和制备工艺方面的特征和优缺点。基于此讨论了生物衍生材料基传感器在人体健康检测和实时运动监测方向的应用实例,并提出了当前的挑战,为柔性应变/压力传感器的开发和应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常胜男
李津
刘皓
关键词:  智能穿戴电子产品  柔性应变/压力传感器  生物衍生材料  碳化  海绵  织物    
Abstract: In recent years, with the development of technology and the advancement of smart wearable technology, flexible wearable electronic products have attracted the attention of researchers due to their excellent performance and flexibility. As an important branch of flexible wearable electro-nic products, flexible strain/pressure sensors can be attached to the human body or integrated into textiles, and having great application potential in the fields of healthcare, human-computer interaction and soft robots.
Strain/pressure sensors are a type of electronic device that converts external stimuli or mechanical deformations (such as tension and compression) into electrical signals. The sensing element is the key to strain/pressure sensors. Abandoning traditional strain/pressure sensor based on rigid materials, new materials and structures have been developed for the flexible strain/pressure sensors in recent years, including metal nanomaterials, conductive polymers and carbon nanomaterials (such as graphene, carbon nanotubes and carbon black materials). These new materials significantly improve the mechanical properties and flexibility of sensors. However, the complicated preparation process, high material cost and unknown toxicity limit the large-scale application of these sensors, and the sensing performance needs to be further improved.
There are abundant biological materials in nature, and many biological materials have been used in electronic fields, such as supercapacitors, batteries and sensors. Natural biomaterial derived materials have the advantages of low cost, easy access, sustainability and eco-friendliness, making them attractive in the direction of flexible strain/pressure sensors. This paper reviewes the research progress of flexible strain/pressure sensors based on biomaterial derived material. The sensors are divided into three types, including the flexible strain/pressure sensors based on carbonized biomaterial, the flexible strain/pressure sensors based on 3D sponge material and the flexible strain/pressure sensors based on fabric substrate material. And their characteristics, advantages and disadvantages in materials and preparation processes are summarized by examples. Based on this, the application examples of biomaterial derived material based sensors in human health detection and real-time motion monitoring are discussed, and the current challenges are proposed to provide reference for the development and application of flexible strain/pressure sensors.
Key words:  smart wearable electronic products    flexible strain/pressure sensors    biomaterial derived materials    carbonization    sponge    fabric
                    发布日期:  2020-11-05
ZTFLH:  TB381  
基金资助: 天津市自然科学基金(18JCYBJC18500);中国博士后科学基金(2016M591390);中国纺织工业联合会资助项目(2017060)
通讯作者:  liuhao_0760@163.com   
作者简介:  常胜男,天津工业大学纺织科学与工程学院硕士研究生,在刘皓老师的指导下进行研究,主要研究方向为柔性压力传感器。
李津,天津工业大学纺织科学与工程学院教授,硕士生导师。在天津纺织工学院获得学士学位和纺织材料与纺织品设计硕士学位。主要研究方向为针织与针织服装工艺技术和产品开发,面料及服装舒适性等。主编和编写教材5部,在国外权威纺织研究期刊和核心期刊上共发表论文20余篇。
刘皓,天津工业大学纺织科学与工程学院副教授,博士研究生导师,智能可穿戴电子纺织品研究所副所长。2011年获得天津工业大学纺织工程专业博士学位。主要研究方向是柔性传感器、智能纺织品,柔性发电与储能材料,柔性电子电路与元件和新型检测方法与仪器。已经出版期刊论文50多篇,其中有30多篇被SCI或EI收录。
引用本文:    
常胜男, 李津, 刘皓. 基于生物衍生材料的柔性应变/压力传感器的研究进展[J]. 材料导报, 2020, 34(19): 19173-19182.
CHANG Shengnan, LI Jin, LIU Hao. Research Progress of Flexible Strain/Pressure Sensors Based on
Biomaterial Derived Materials. Materials Reports, 2020, 34(19): 19173-19182.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050179  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19173
1 Wang X, Liu Z, Zhang T. Small,2017,13(25),1602790.
2 Zang Y, Zhang F, Di C, et al. Materials Horizons,2015,2(2),140.
3 Donati M, Vitiello N, Marco S, et al. Sensors,2013,13(1),1021.
4 Lipomi D J, Vosgueritchian M, Tee C K, et al. Nature Nanotechnology,2011,6(12),788.
5 Park J, Lee Y, Hong J, et al. ACS Nano,2014,8(5),4689.
6 Samad Y A, Li Y, Schiffer A, et al. Small,2015,11(20),2380.
7 Zhang H, Liu N, Shi Y, et al. ACS Applied Materials & Interfaces,2016,8(34),22374.
8 Bae G Y, Pak S W, Kim D, et al. Advanced Materials,2016,28(26),5300.
9 Lee J, Kwon H, Seo J, et al. Advanced Materials,2015,27(15),2439.
10 Park S W, Das P S, Chhetry A, et al. IEEE Sensors Journal, DOI: 10.1109/JSEN.2017.2749233.
11 Metzger C, Fleisch E, Meyer J, et al. Applied Physics Letters,2008,92(1),41.
12 Lee I, Sung H J. Experiments in Fluids,1999,26(1-2),27.
13 Wang Y R, Zheng J M, Ren G Y, et al. Smart Materials and Structures,2011,20(4),045009.
14 Wu W, Wen X, Wang Z L. Science,2013,340(6135),952.
15 Someya T, Kato Y, Sekitani T, et al. Proceedings of the National Academy of Sciences of the United States of America,2005,102(35),12321.
16 Zang Y, Zhang F, Huang D, et al. Nature Communications,2015,6(1),6269.
17 Someya T, Sekitani T, Iba S, et al. Proceedings of the National Academy of Sciences,2004,101(27),9966.
18 Hrovat M, Belavic D, Samardzija Z. Journal of the European Ceramic Society,2001,21(10-11),2001.
19 Singh P, Miao J, Park W T, et al. Journal of Micromechanics and Microengineering,2011,21(10),105007.
20 Ajovalasit A, Zuccarello B. The Journal of Strain Analysis for Engineering Design,2005,40(7),643.
21 Fu X, Dong H, Zhen Y, et al. Small,2015,11(27),3351.
22 Tang Y, Gong S, Chen Y, et al. ACS Nano,2014,8(6),5707.
23 Gong S, Schwalb W, Wang Y, et al. Nature Communications,2014,5(1).
24 Brady S, Diamond D, Lau K T. Sensors and Actuators A Physical,2005,119(2),398.
25 Takamatsu S, Kobayashi T, Shibayama N, et al. Sensors and Actuators A Physical,2012,184(184),57.
26 Choong C L, Shim M B, Lee B S, et al. Advanced Materials,2014,26(21),3451.
27 Boland C S, Khan U, Backes C, et al. ACS Nano,2014,8(9),8819.
28 Pang Y, Tian H, Tao L, et al. ACS Applied Materials & Interfaces,2016,8(40),26458.
29 Nilsson E, Lund A, Jonasson C, et al. Sensors and Actuators A Physical,2013,201(5),477.
30 Ryu S, Lee P, Chou J B, et al. ACS Nano,2015,9(6),5929.
31 Wang X, Gu Y, Xiong Z, et al. Advanced Materials,2014,26(9),1309.
32 Amjadi M, Yoon Y J, Park I. Nanotechnology,2015,26(37),375501.
33 Wu X, Han Y, Zhang X, et al. Advanced Functional Materials,2016.
34 Huang Y, Fang D, Wu C, et al. Review of Scientific Instruments,2016,87(6),065007.
35 Wu X, Lu C, Han Y, et al. Composites Science and Technology,2016,124,44.
36 Park H, Jeong Y R, Yun J, et al. ACS Nano,2015,9(10),150923153510002.
37 Jian M, Xia K, Wang Q, et al. Advanced Functional Materials,2017,27(9),1606066.
38 Kim J, Lee J, Son D, et al. Nano Convergence,2016,3(1),4.
39 Wang M, Anoshkin I V, Nasibulin A G, et al. Advanced Materials,2013,25(17),2428.
40 Pang C, Lee G Y, Kim T I, et al. Nature Materials,2012,11(9),795.
41 Park J, Lee Y, Hong J, et al. ACS Nano,2014,8(5),4689.
42 Tianqi H, Jiayi S, Wei W, et al. Cellulose,2018,25(7),4031.
43 Zhao Q, Zhu Q, An Y, et al. Applied Surface Science,2018,440,770.
44 Xiao P W, Meng Q, Zhao L, et al. Materials & Design,2017,129,164.
45 Amjadi M, Kyung K U, Park I, et al. Advanced Functional Materials,2016,26(11),1678.
46 Wang C, Li X, Gao E, et al. Advanced Materials,2016,28(31),6640.
47 Wang C, Xia K, Jian M, et al. Journal of Materials Chemistry C,2017,5(30),7604.
48 Zhang M, Wang C, Wang H, et al. Advanced Functional Materials,2016,27(2),1604795.
49 Deng C, Pan L, Cui R, et al. Journal of Materials Science: Materials in Electronics,2017,28(4),3535.
50 Li Y Q, Huang P, Zhu W B, et al. Scientific Reports,2017,7,45013.
51 Chen S, Song Y, Xu F. ACS Applied Materials & Interfaces,2018,10(40),34646.
52 Li Y, Samad Y A, Taha T, et al. ACS Sustainable Chemistry & Enginee-ring,2016,4(8),4288.
53 Ding Y, Xu T, Onyilagha O, et al. ACS Applied Materials & Interfaces,2019,11(7),6685.
54 Li Y, Samad Y A, Liao K. Journal of Materials Chemistry A,2015,3(5),2181.
55 Liu W, Liu N, Yue Y, et al. Journal of Materials Chemistry C,2018,6(6),1451.
56 Fang X, Tan J, Gao Y, et al. Nanoscale,2017,9(5),17948.
57 Chen C, Song J, Zhu S, et al. Chem,2018,4(3),544.
58 Li Y Q, Zhu W B, Yu X G, et al. ACS Applied Materials & Interfaces,2016,8(48),33189.
59 Lu Y, He W, Cao T, et al. Scientific Reports,2014,4.
60 Arbab A A, Sun K C, Sahito I A, et al. Physical Chemistry Chemical Physics,2015,17(19),12957.
61 Wen Z, Yeh M H, Guo H, et al. Science Advances,2016,2(10),e1600097.
62 Seesaard T, Lorwongtragool P, Kerdcharoen T. Sensors,2015,15(1),1885.
63 Yang M, Pan J, Xu A, et al. Polymers,2018,10(6),568.
64 Chuanjie Z, Guangsheng Z, Weida R, et al. Cellulose,2018,25(8),4859.
65 Hu J, Zhou S, Shi J, et al. The Journal of the Textile Institute,2017,108(9),1545.
66 Kim S J, Song W, Yi Y, et al. ACS Applied Materials & Interfaces, DOI: 10.1021/acsami.7b15386.
67 He S, Xin B, Chen Z, et al. Cellulose,2018,25(1530-1534),1.
68 Liu Y, Tao L Q, Wang D Y, et al. Applied Physics Letters,2017,110(12),123508.
69 Cai G, Yang M, Xu Z, et al. Chemical Engineering Journal,2017,325,396.
[1] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[2] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[3] 陈龙海, 李长荣, 黎志英, 李正嵩, 刘占林. HRB500E钢中第二相VC的异质形核分析与晶粒细化[J]. 材料导报, 2020, 34(Z1): 436-439.
[4] 马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
[5] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[6] 李田雨, 刘小艳, 张玉梅, 熊传胜, 曹文凯, 李伟华. 海水海砂制备活性粉末混凝土的碳化机理[J]. 材料导报, 2020, 34(8): 8042-8050.
[7] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[8] 孙晓霞, 鲍艺, 彭黔荣, 陈亭羽, 卢小鸾, 杨敏. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7): 7161-7167.
[9] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[10] 王瑞, 李聃阳, 刘星, 方纾, 伏立松, 熊维成. 氧等离子体处理碳纳米管对剪切增稠液增强芳纶织物防刺性能的影响[J]. 材料导报, 2020, 34(18): 18188-18193.
[11] 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用[J]. 材料导报, 2020, 34(17): 17099-17104.
[12] 张倩, 郑振荣, 赵晓明, 毛科铸, 罗丽娟. 高温下涂层织物传热过程的数值模拟[J]. 材料导报, 2020, 34(16): 16167-16171.
[13] 栗思琪, 鲁浈浈, 张琪. 碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展[J]. 材料导报, 2020, 34(15): 15039-15046.
[14] 章强, 刘洪利, 陈迎豪, 李兴建, 张宜恒. 纳米二氧化硅改性“Click”型侧链含氟聚氨酯的制备及在织物整理剂上的应用[J]. 材料导报, 2020, 34(14): 14218-14222.
[15] 黄建成, 丁冬, 李玉婷, 张慧芳, 刘海宁, 胡耀强, 叶秀深, 吴志坚. 松针基碳电极的制备及对碱/碱土金属离子的电吸附[J]. 材料导报, 2020, 34(12): 12015-12019.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed