Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19166-19172    https://doi.org/10.11896/cldb.19060044
  金属与金属基复合材料 |
小口径管道腐蚀及防护策略研究进展
王思权1, 陈世波2,3, 李焰1, 齐建涛4
1 中国石油大学(华东)材料科学与工程学院,青岛 266580
2 潍坊东方钢管有限责任公司,潍坊 261000
3 广西大学化学与化工学院,南宁 530004
4 中国石油大学(华东)新能源学院,青岛 266580
Advances in Corrosion and Prevention of a Small-bore Piping
WANG Siquan1, CHEN Shibo2,3, LI Yan1, QI Jiantao4
1 School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
2 Weifang Orient Steel Pipe Co. Ltd, Weifang 261000, China
3 College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
4 College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
下载:  全 文 ( PDF ) ( 3432KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国工业水平的不断发展与提高,工业生产中对石油资源的需求越来越迫切,而石油资源分布的地域性差异给资源的输送带来了巨大的挑战。集输管道能够大幅缓解油气资源输送的困难,被广泛应用于石油石化行业。然而,集输管道长期在土壤、水或空气中服役,并且具有口径小、数量多和内壁防腐困难等突出特点,因此,小口径集输管道的腐蚀问题的研究具有重要的科学和工程应用价值。
在小口径管道外壁防腐方面,通常采用传统的石油沥青类(如石油沥青、煤沥青)防腐涂层,虽然该涂层成本低廉,但是存在机械强度低、韧性受温度影响大、易吸水且不能抵抗细菌腐蚀等局限性。鉴于此,加入其他树脂来改善涂层性能的方法引起了科学界的持续关注。在内防腐方面,由于小口径管道施工难度大,存在焊接热影响区以及现场内补口技术相对落后,导致传统涂层防腐技术的应用受到了限制。传统的内壁防腐主要采用添加缓蚀剂的方式,但由于其成本过高并未得到普遍应用。在此基础上,国内外相继开发出一些新型内防腐技术,为小口径管道的内防腐提供了新思路。
本文首先介绍了影响小口径管道外壁腐蚀的各个环境因素(大气腐蚀、土壤腐蚀和海水腐蚀等),然后讨论了三层结构的聚乙烯和熔结环氧粉末等外壁防腐技术。需要注意的是,小口径管道由于管径小,传统的内壁防腐层涂覆存在困难,因而其内壁腐蚀成为工程应用的安全隐患。鉴于此,本文详尽分析了小口径管道内壁的主要腐蚀破坏形式、腐蚀影响因素(含氧量、pH值和含盐量等因素),并讨论了常用内壁防腐技术。最后,本文展望了小口径管道防腐措施的未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王思权
陈世波
李焰
齐建涛
关键词:  管道  小口径  外腐蚀  内腐蚀  防腐措施    
Abstract: In China, the demand for petroleum resources is increasing since the rapid development of the industry. While the regional differences in oil and gas resources distribution have brought enormous challenges to the transportation of resources. Oil-gas gathering and transferring pipelines are widely used in the petroleum and petrochemical industry, because they are helpful to transport oil and gas resources effectively. However, oil-gas gathering and transferring pipelines are exposed to soil, water or atmosphere environment, and they also have some prominent characteristics, such as small caliber, large number, short distance and having difficulty in inner wall corrosion protection. As a result, it is of scientific and engineering value to study corrosion matters on small-bore oil and gas gathering pipelines.
In the outer wall anticorrosion of small-bore pipes, the traditional petroleum asphalt anti-corrosion coatings, such as petroleum asphalt and coal asphalt, are adopted widely because of low cost. Despite the fact, the mechanical strength and temperature toughness of these coatings are inferior. Thus, they are susceptible to bacterial corrosion. Given this circumstance, adding other resins to improve coating performance has caused continuous concern in the scientific community; when it comes to internal corrosion protection, the general anticorrosion techniques are limited due to the high complexity construction of small-diameter pipelines, the existence of welding heat-affected zones and the lag of fill-in technology. The way to add corrosion inhibitors is not universally employed because of the high cost. In order to solve these problems, some new internal anti-corrosion technologies have been developed at home and abroad.
In this paper, the environmental factors of the small-diameter pipelines' outer wall, including atmospheric corrosion, soil corrosion, and sea-water corrosion, are introduced firstly, and then the anti-corrosion technologies of three-layer polyethylene (3PE) and melted epoxy powder are discussed. Notably, the traditional coating of inner wall anticorrosive has difficulty in spraying each location on account of the narrow diameter of small-diameter pipelines, so the inner wall corrosion of small-diameter pipelines has become a potential hazard in engineering applications. Considering this situation, we analyze the main corrosion factors of the inner wall of the pipeline, and how these factors affect the inner wall corrosion. In addition, we discuss the commonly used anti-corrosion technologies of the inner wall, and we also forecast the future development trend of anti-corrosion measures for small-caliber pipelines.
Key words:  pipeline    small-bore    outer wall anticorrosion    internal corrosion    anticorrosion
                    发布日期:  2020-11-05
ZTFLH:  TG171  
通讯作者:  alexander_qi87@sina.com   
作者简介:  王思权,2017年6月毕业于青岛理工大学,获得工学学士学位。现为中国石油大学(华东)材料科学与工程学院硕士研究生,在李焰教授和齐建涛副教授的指导下进行研究。目前主要研究领域为硫回收装置硫化氢的在线监测。
李焰,中国石油大学(华东)材料科学与工程学院教授,博士研究生导师。青岛首批百强引进人才、青岛杰出科学家和技术学家。中国腐蚀与保护学会油气田与管道腐蚀与保护专业委员会副主席,山东省特种设备协会水处理和有机热载体专业委员会副主任,山东和青岛腐蚀与防护学会副秘书长。成功主持2016年全国腐蚀电化学及测试方法学术交流会。长期从事金属的腐蚀与防护研究,并取得了大量系统性、创新性的研究成果,在电偶腐蚀、微电极阵列研究与表征方面已累计发表被SCI、EI收录的40余篇论文,SCI他引1 000余次。
齐建涛,中国石油大学(华东)化学工程学院副教授,硕士研究生导师。山东省暨青岛市腐蚀与防护学会理事。2011年6月本科毕业于中国石油大学(华东)化学工程学院,2015年9月在英国曼彻斯特大学腐蚀与防护专业取得博士学位,2015—2018年分别在英国曼彻斯特大学(LATEST2项目,合作导师Prof. George Thompson院士)和法国国家科学研究中心(NEPAL FUI项目,合作导师Prof. Philippe Marcus)进行博士后研究工作。主要从事金属材料的表面改性、纳米材料光谱分析及耐蚀性能评估等方面的研究工作。近年来,在腐蚀与防护研究领域发表论文10余篇,包括Mater. Let.、Electrochem. Commun.、Electrochim. Acta、J. Electrochem. Soc.、Appl. Surf. Sci.、Thin Solid Films.和Surf. Coat. Technol等被SCI收录的学术期刊。
引用本文:    
王思权, 陈世波, 李焰, 齐建涛. 小口径管道腐蚀及防护策略研究进展[J]. 材料导报, 2020, 34(19): 19166-19172.
WANG Siquan, CHEN Shibo, LI Yan, QI Jiantao. Advances in Corrosion and Prevention of a Small-bore Piping. Materials Reports, 2020, 34(19): 19166-19172.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060044  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19166
1 Peng C H, Liu Z Y, Wei X Z. Engineering Failure Analysis,2012,25,13.
2 Liu Y C, Zhang B, Zhang Y L, et al. Engineering Failure Analysis,2016,60,307.
3 Lin Z, Han W L, Guo J Y, et al. Petroleum Engineering Construction,2017,43(4),76(in Chinese).
林竹,韩文礼,郭继银,等.石油工程建设,2017,43(4),76.
4 Ma G, Bai R. Sino-global Energy,2018,23(1),55(in Chinese).
马钢,白瑞.中外能源,2018,23(1),55.
5 Cui H, Song H P, He J S. Oil & Gas Storage and Transportation,2001,20(1),25(in Chinese).
崔虹,宋花平,何建设.油气储运,2001,20(1),25.
6 Tan Y J. Corrosion Science,2011,53(4),1145.
7 Jeannin M, Jeannin M, Calonnec D, et al. Corrosion Science,2010,52(6),2026.
8 Liy Z Y, Li X G, Du C W, et al. Corrosion Science,2008,50(8),2251.
9 Neef D, Dillmann P, Bellot G L, et al. Corrosion Science,2005,47(2),515.
10 Ferreira C A M, Ponciano J A C, Vaitsman D S, et al. Science of the Total Environment,2007,388(1),250.
11 Zhang D M. Chinese Journal of Soil Science,1988,19(5),206(in Chinese).
张道明.土壤通报,1988,19(5),206.
12 Chen X, Chen P N. China Chemical Industry Equipment,2018,20(1),29(in Chinese).
程兴,陈培宁.中国化工装备,2018,20(1),29.
13 Zheng F. Total Corrosion Control,2013,27(6),47(in Chinese).
郑凤.全面腐蚀控制,2013,27(6),47.
14 Ma G G, Fu Z L, Yang J, et al. Oil & Gas Storage and Transportation,2005,24(12),54(in Chinese).
马国光,付志林,杨静,等.油气储运,2005,24(12),54.
15 Wu C H, Gan F X. Materials Protection,2000,33(4),33(in Chinese).
吴成红,甘复兴.材料保护,2000,33(4),33.
16 Ling Z C, Dai M Y, Zhou Z F, et al. Paint & Coatings Industry,2017,47(1),68(in Chinese).
凌志成,代孟元,周正发,等.涂料工业,2017,47(1),68.
17 Huo F, Wang W, Zhang W R, et al. Oil & Gas Storage and Transportation,2013,32(9),943(in Chinese).
霍峰,王玮,张文瑞,等.油气储运,2013,32(9),943.
18 Lei Y. Keji Yu Qiye,2014(14),230(in Chinese).
雷阳.科技与企业,2014(14),230.
19 Liu M L. China Petroleum and Chemical Standard and Quality,2013(9),255(in Chinese).
刘美玲.中国石油和化工标准与质量,2013(9),255.
20 Wang Y. Petrochemical Industry Technology,2018(7),266(in Chinese).
王英.石化技术,2018(7),266.
21 Zhu J, Xu L, Feng Z, et al. Corrosion Science,2016,111,391.
22 Dong S E, Zhang D S, Zhang P, et al. Machinery,2005,32(9),20(in Chinese).
董事尔,何东升,张鹏,等.机械,2005,32(9),20.
23 Shirinzadeh-Dastgiri M, Mohammadi J, Behnamian Y, et al. Engineering Failure Analysis,2015,53,78.
24 Fan Z D, Du J S, Zhang Z B, et al. Engineering Failure Analysis,2019,96,340.
25 Wang J L, Geng B. Corrosion & Protection in Petrochemical Industry,2008,25(5),42(in Chinese).
王建雷,耿铂.石油化工腐蚀与防护,2008,25(5),42.
26 Muthanna B G N, Amara M, Meliani M H, et al. Engineering Failure Analysis,2019,102,293.
27 Gao H L. Oil-Gasfield Surface Engineering,1996,15(2),43(in Chinese).
高惠临.油气田地面工程,1996,15(2),43.
28 Bedi S S, Abdolmaleki A, Adibi N. Engineering Failure Analysis,2007,14(1),250.
29 Li Y G. Oil-Gasfield Surface Engineering,2014,33(2),91(in Chinese).
李亚光.油气田地面工程,2014,33(2),91.
30 Yang W G, Xu J M. Guangzhou Chemical Industry,2005,33(3),108(in Chinese).
杨卫国,徐君铭.广州化工,2005,33(3),108.
31 Beidokhti B, Dolati A, Koukabi A H. Materials Science and Engineering: A,2009,507(1-2),167.
32 Papavinasam S, Doiron A, Revie R W. Corrosion,2010,66(3),035006.
33 Martínez D, Gonzalez R, Montemayor K, et al. Wear,2009,267(1-4),255.
34 Liang P, Tang K, Tao Z C, et al. Petroleum Geology and Engineering,2000,14(6),28(in Chinese).
梁平,唐柯,陶振春,等.石油地质与工程,2000,14(6),28.
35 Li L. Petrochemical Industry Technology,2018(7),176(in Chinese).
李磊.石化技术,2018(7),176.
36 Yang H Y, Chen J J, Cao C N. Journal of Chinese Society for Corrosion and Protection,2000,20(2),97(in Chinese).
杨怀玉,陈家坚,曹楚南.中国腐蚀与防护学报,2000,20(2),97.
37 Zhang Z H, Guo J B. Bao-Steel Technology,2000(4),54(in Chinese).
张忠铧,郭金宝.宝钢技术,2000(4),54.
38 Ingham B, Ko M, Laycock N, et al. Corrosion Science,2012,56,96.
39 Su L S, Zhang Y. Contemporary Chemical Industry,2015,44(11),2655(in Chinese).
苏留帅,张瑶.当代化工,2015,44(11),2655.
40 Xie F, Wang D, Wu Ming, et al. Materials Protection,2015,48(11),31(in Chinese).
谢飞,王丹,吴明,等.材料保护,2015,48(11),31.
41 Wang D, Xie F, Wu M, et al. Oil & Gas Storage and Transportation,2009,28(9),10(in Chinese).
王丹,谢飞,吴明,等.油气储运,2009,28(9),10.
42 Ossai C I, Boswell B, Davies I J. Engineering Failure Analysis,2015,53,36.
43 Liu Q, Kong B, Han J, et al. LWT-Food Science and Technology,2014,57(1),165.
44 Han J, Carey J W, Zhang J. Journal of Applied Electrochemistry,2011,41(6),741.
45 Liu Y, Zhang B, Zhang Y, et al. Engineering Failure Analysis,2016,60,307.
46 Zhao J D, Zhang Y, Li Z, et al. Oil-Gasfield Surface Engineering,2018,37(2),87(in Chinese).
赵军栋,张阳,李哲,等.油气田地面工程,2018,37(2),87.
47 Zhang J. Shangpin Yu Zhiliang,2016(27),29(in Chinese).
张健.商品与质量,2016(27),29.
48 Gao M, Pang X, Gao K. Corrosion Science,2011,53(2),557.
49 Liu Q Y, Mao L J, Zhou S W. Corrosion Science,2014,84,165.
50 Zeng L, Zhang G A, Guo X P, et al. Corrosion Science,2015,90,202.
51 Xu H Y. Anticorrosion & Insulation Technology,2010(1),25(in Chinese).
徐海英.防腐保温技术,2010(1),25.
52 Gómez-del Río T, Rodríguez J, Pearson R A. Composites Part B: Engineering,2014,57,173.
53 Al-Sabagh A M, Abdou M I, Migahed M A, et al. Egyptian Journal of Petroleum, DOI: 10.1016/j.ejpe.2017.07.005.
54 Li S X, Zhou S Q. Modern Paint and Finishing,2011,14(9),16(in Chinese).
李绍兴,周拾庆.现代涂料与涂装,2011,14(9),16.
55 Li H X. Construction Science and Technology,2014(17),68(in Chinese).
李洪新.建设科技,2014(17),68.
56 Ge P L, Yang D M, Han Y, et al. Corrosion and Protection,2014,35(4),384(in Chinese).
葛鹏莉,羊东明,韩阳,等.腐蚀与防护,2014,35(4),384.
57 Sun Y B, Han X L, Yu L H. Oil-Gasfield Surface Engineering,2016,35(3),106(in Chinese).
孙雁伯,韩秀丽,王兰花.油气田地面工程,2016,35(3),106.
58 Zhang X B, Hou X Z, Sun S T, et al. Energy Conservation in Petroleum & Petrochemical Industry,2000(1),50(in Chinese).
张晓波,侯贤忠,孙树涛,等.石油石化节能,2000(1),50.
59 Ding J, Liu Y, Luan S L, et al. China Petroleum and Chemical Standard and Quality,2016,36(11),57(in Chinese).
丁建,刘勇,栾世林,等.中国石油和化工标准与质量,2016,36(11),57.
60 Dai Q B, Fang J M, Peng Z B. Fujian Chemical Industry,2015(8),88(in Chinese).
代启兵,方江敏,彭泽标.化学工程与装备,2015(8),88.
[1] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[2] 崔巍, 宋日悬, 肖忠民, 冯子明, 冷德成, 董康兴, 张强, 杨志军. X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法[J]. 材料导报, 2020, 34(2): 2131-2136.
[3] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[4] 崔巍, 王珂, 姜民政, 马春阳, 冯子明, 冷建成. 管道焊缝裂纹扩展的流固磁耦合表征[J]. 材料导报, 2018, 32(16): 2852-2858.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed