Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7161-7167    https://doi.org/10.11896/cldb.19050214
  高分子与聚合物基复合材料 |
角蛋白生物材料在创伤愈合中的应用研究进展
孙晓霞1, 鲍艺1, 彭黔荣2,3, 陈亭羽1, 卢小鸾1, 杨敏1
1 贵州大学药学院,贵阳 550025;
2 贵州大学化学与化工学院,贵阳 550025;
3 贵州中烟工业有限责任公司技术中心,贵阳 550009
Advances on Application of Keratin Biomaterials in Wound Healing
SUN Xiaoxia1, BAO Yi1, PENG Qianrong2,3, CHEN Tingyu1, LU Xiaoluan1,YANG Min1
1 School of Medicine, Guizhou University, Guiyang 550025, China;
2 School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China;
3 Technology Center of China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550009, China
下载:  全 文 ( PDF ) ( 3621KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 伤口愈合是一种复杂、动态和多步骤的过程,其愈合速率受创伤类型、病理学条件、敷料类型等因素影响。理想的创伤敷料应具备加速伤口愈合、防止感染、恢复皮肤结构和性能以及良好的生物相容性和降解性等特点。因此伤口辅料的研究热点是天然源的生物材料及其衍生材料,如壳聚糖、明胶、胶原蛋白、丝素蛋白、角蛋白等。
   角蛋白是一种具有良好生物相容性、可降解性且原材料易得的蛋白质,其含有的肽链主体是具有细胞粘附位点的氨基酸链段,如亮氨酸-天冬氨酸-缬氨酸(LDV)、谷氨酸-天冬氨酸-丝氨酸(EDS)和精氨酸-甘氨酸-天冬氨酸(RGD),可模拟细胞外基质,促进成纤维细胞的粘附、增殖、转移等,此外,角蛋白还具有快速凝血和聚集红细胞的作用。然而,角蛋白存在脆性以及力学性能和加工性能差的缺点,通常添加合成或天然的高分子材料作为增塑剂、交联剂形成复合材料(如聚乙烯醇、聚乳酸、壳聚糖、明胶等)以改善这些缺陷。这些复合材料已应用于促进伤口的愈合。
   本文综述了角蛋白及其复合水凝胶、海绵状多孔支架和膜材料的制备以及在伤口愈合方面的研究成果,特别是将皮肤转化生长因子、抗菌药(如莫匹罗星)、抑菌生物材料(如天然植物中的酚酸)以及抗菌金属纳米物(如纳米银和氧化锌)等加载到角蛋白复合材料中,可得到为伤口愈合创造理想环境的多功能角蛋白伤口敷料,用于急性或慢性伤口的愈合,如在糖尿病足部溃疡等伤口愈合中,可增强抑菌效果和缩短伤口的炎症时间等。同时也讨论了角蛋白作为生物材料在医药领域的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙晓霞
鲍艺
彭黔荣
陈亭羽
卢小鸾
杨敏
关键词:  角蛋白  水凝胶  海绵状多孔支架  膜纤维  伤口敷料    
Abstract: Wound healing is a complex, dynamic, and multistep process which can be affected in different conditions such as the type of wound, pathological conditions, and type of dressing.The ideal wound dressing is characterized by accelerated wound healing, preventing infection, restoration of skin structure and function, fascinating biomaterial and biodegradability and so on. Therefore, the research of wound dressing focus on the development of naturally-derived biomaterials, such as chitosan, gelatin, collagen, silk fibroin, keratin, etc.
Keratin is one of proteins with good biocompatibility and degradability. What’s more, keratin contains cell binding motifs such as leucine-aspartic acid-valine (LDV), glutamic acid-aspartic acid-serine (EDS), and arginine-glycine-aspartic acid (RGD),which imitates the environment of the extracellular matrix to accelerate the adhesion and proliferation of fibroblasts. Furthermore, keratins actively participate in coagulation and aggregation of red blood cells. However, keratin has the disadvantages of brittleness, mechanical properties and poor processing properties. Usually, synthetic or natural polymer materials are added as plasticizers and cross-linking agents to form composite materials to improve these defects, such as polyvinyl alcohol,polylactic acid,chitosan and gelatin. These composite materials have been used to promote healing of wounds.
This review offers a retrospection of the preparation of keratin and its composite hydrogels, scaffolds and membrane materials, and its research on wound healing. Especially skin transforming growth factors, antibacterials(mupirocin), bacteriostatic biomaterials(phenolic acid in natural plants)and antibacterial metal nano-materials (nano-silver, zinc oxide)are loaded into the keratin composite to obtain a multifunctional keratin wound dressing.It is used for acute and/or chronic wounds,such as diabetic foot ulcer, showing a unique advantage due to enhance the antibacterial effect and shortening the inflammation time of the wound. In addition, the prospect of keratin as a biomaterial in the field of medicine is discussed.
Key words:  keratin    hydrogels    spongy porous scaffolds    films and fibres    wound dressing
                    发布日期:  2020-04-10
ZTFLH:  R914  
基金资助: 国家自然科学基金(21562014)
通讯作者:  2578973180@qq.com   
作者简介:  孙晓霞,2017年6月毕业于贵州大学,获得制药工程学士学位。现为贵州大学药学院制药工程专业的研究生。目前主要研究领域为角蛋白复合材料在伤口愈合中的应用。
杨敏,贵州大学药学院教授、硕士研究生导师。1982年本科毕业于贵州工学院化工系,2006年在四川大学化学学院有机化学专业获博士学位,目前主要从事伤口敷料和水凝胶类生物材料、纳米载药和催化的研究工作。
引用本文:    
孙晓霞, 鲍艺, 彭黔荣, 陈亭羽, 卢小鸾, 杨敏. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7): 7161-7167.
SUN Xiaoxia, BAO Yi, PENG Qianrong, CHEN Tingyu, LU Xiaoluan,YANG Min. Advances on Application of Keratin Biomaterials in Wound Healing. Materials Reports, 2020, 34(7): 7161-7167.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050214  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7161
1 Chua A W C, Khoo Y C, Tan B K, et al. Burns & Trauma, 2016, 4(1), 3.
2 Sundaramurthi D, Krishnan U M, Sethuraman S. Polymer Reviews, 2014, 54(2), 348.
3 Mofazzal Jahromi M A, Sahandi Z P, Moosavi Basri S M, et al. Advanced Drug Delivery Reviews, 2017, 123, 33.
4 Boateng J S, Matthews K H, Stevens H N E, et al. Journal of Pharmaceutical Sciences, 2008, 97(8), 2892.
5 Siedenbiedel F, Tiller J C. Polymers,2012, 4(1), 46.
6 Borda L J, Macquhae F E, Kirsner R S. Current Dermatology Reports, 2016, 5(4), 1.
7 Landén Ning Xu, Li D, Mona Såthle, et al. Cellular and Molecular Life Sciences, 2016, 73(20), 3861.
8 Lin L, Chen J M, Wang H, et al. Materials Reports A:Review Papers, 2019, 33(1), 65(in Chinese).
林琳, 陈景民, 王会, 等. 材料导报:综述篇, 2019, 33(1), 65.
9 You J, Rafat M, Almeda D, et al. Biomaterials,2015, 57, 22.
10 Zhao X, Wu H, Guo B, et al. Biomaterials, 2017, 122, 34.
11 Li J, Xue B. Journal of Clinical Rehabilitative Tissue Engineering Research, 2013, 17(12), 2225(in Chinese).
李晶, 薛斌. 中国组织工程研究, 2013, 17(12), 2225.
12 Nicodemus G D, Bryant S J. Tissue Engineering Part B Reviews, 2008, 14(2), 149.
13 Lee H, Noh K, Sang C L, et al. Tissue Engineering & Regenerative Medicine, 2014, 11(4), 255.
14 Morais J M, Papadimitrakopoulos F, Burgess D J. The AAPS Journal, 2010, 12(2), 188.
15 Beighton E. Polymer, 1973, 14(2), 80.
16 Teresa K K, Justyna B. Waste Management, 2011, 31(8), 1689.
17 Shavandi A, Silva T H, Bekhit A A, et al. Biomaterials Science, 2017, 5(9), 1699.
18 Li P F, Hong Y, Chen S C, et al. Chinese Polymer Bulletin, 2013(6), 7 (in Chinese).
李鹏飞, 洪颖, 陈双春, 等. 高分子通报, 2013(6), 7.
19 Rouse J G, Van Dyke M E. Materials, 2010, 3(2), 999.
20 Wang Y, Zhang W, Yuan J. Materials Science and Engineering C, 2016, 59, 30.
21 Verma V, Verma P, Ray P, et al. Biomedical Materials, 2008, 3(2), 25007.
22 Burnett L R, Rahmany M B, Richter J R, et al. Biomaterials, 2013, 34(11), 2632.
23 Aboushwareb T, Eberli D, Ward C, et al. Journal of Biomedical Mate-rials Research Part B Applied Biomaterials, 2008, 90(1), 45.
24 Rahmany M B, Hantgan R R, Van D M. Biomaterials, 2013, 34(10), 2492.
25 Tang L, Sierra J O, Kelly R, et al. Experimental Dermatology, 2012, 21(6), 458.
26 Ullah F, Othman M B H, Javed F, et al. Materials Science and Enginee-ring C, 2015, 57, 414.
27 Anumolu S N S, Menjoge A R, Deshmukh M, et al. Biomaterials, 2011, 32(4), 1204.
28 Abdelrahman T, Newton H. Surgery (Oxford), 2011, 29(10), 491.
29 Hill P, Brantley H, Van Dyke M. Biomaterials, 2010, 31(4), 585.
30 De Guzman R C, Merrill M R, Richter J R, et al. Biomaterials, 2011, 32(32), 8205.
31 Bragulla H H, Homberger D G. Journal of Anatomy, 2010, 214(4), 516.
32 Silva R, Singh R, Sarker B, et al. Journal of Materials Chemistry B, 2014, 2(33), 5441.
33 Esparza Y, Bandara N, Ullah A, et al. Materials Science & Engineering C, 2018, 90, 446.
34 Wang J, Hao S, Luo T, et al. Colloids and surfaces B: Biointerfaces, 2016, 149, 341.
35 Poranki D, Whitener W, Howse S, et al. Journal of Biomaterials Applications, 2013, 29(1), 26.
36 Poranki D, Goodwin C, Van D M. BioMed Research International, 2016, 2016, 1.
37 Kakkar P, Madhan B. Materials Science and Engineering: C, 2016, 66, 178.
38 Park M, Shin H K, Kim B S, et al. Materials Science & Engineering C, 2015, 55, 88.
39 Han S, Ham T R, Haque S, et al. Acta Biomaterialia, 2015, 23, 201.
40 Raja S T K, Thiruselvi T, Sailakshmi G, et al. Biochimica et Biophysica Acta (BBA) - General Subjects, 2013, 1830(8), 4030.
41 Roy D C, Tomblyn S, Burmeister D M, et al. Advances in Wound Care, 2015, 4(8), 457.
42 Veerasubramanian P K, Thangavel P, Kannan R, et al. Colloids & Surfaces B Biointerfaces, 2018, 165, 92.
43 Ponrasu T, Veerasubramanian P K, Kannan R, et al. RSC Advances, 2018, 8(5), 2305.
44 Zhai M, Xu Y, Zhou B, et al. Journal of Photochemistry and Photobiology B: Biology, 2018, 180, 253.
45 Villanueva M E, Cuestas M L, Pérez C J, et al. Journal of Colloid and Interface Science, 2019, 536, 372.
46 Li W, Gao F, Kan J, et al. Colloids and Surfaces B: Biointerfaces, 2019, 175, 436.
47 Xu S, Sang L, Zhang Y, et al. Materials Science and Engineering:C-Materials for Biological Applications, 2013, 33(2), 648.
48 Tan H B, Wang F Y, Ding W, et al. Biomedical and Environmental Sciences, 2015, 28(3), 178.
49 Navone S, Pascucci L, Dossena M, et al. Stem Cell Research & Therapy, 2014, 5(1), 7.
50 Zoccola M, Aluigi A, Vineis C, et al. Biomacromolecules, 2008, 9(10), 2819.
51 Bhardwaj N, Sow W T, Devi D, et al. Integrative Biology, 2015, 7(1), 53.
52 Khajavi R, Rahimi M K, Abbasipour M, et al. Journal of Bioactive and Compatible Polymers, 2016, 31(1), 60.
53 Singaravelu S, Ramanathan G, Raja M D, et al. International Journal of Biological Macromolecules, 2016, 86, 810.
54 Gupta P, Nayak K K. International Journal of Biological Macromolecules, 2016, 85, 141.
55 Yamauchi K, Yamauchi A, Kusunoki T, et al. Journal of Biomedical Materials Research, 1996, 31(4), 439.
56 Borrelli M, Joepen N, Reichl S, et al. Biomaterials, 2015, 42, 112.
57 Aluigi A, Sotgiu G, Torreggiani A, et al. ACS Applied Materials & Interfaces, 2015, 7(31), 17416.
58 Katoh K, Shibayama M, Tanabe T, et al. Biomaterials, 2004, 25(12), 2265.
59 Yin X, Li F, He Y, et al. Biomaterials Science, 2013, 1(5), 528.
60 Zhang H, Yu Y, Cui S. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2011, 384, 501.
61 Tanase C E, Spiridon I. Materials Science & Engineering C, 2014, 40, 242.
62 Thilagar S, Jothi N A, Kamaruddin M, et al. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2010, 88B(1), 12.
63 Singaravelu S, Ramanathan G, Raja M D, et al. Materials Letters, 2015, 152, 90.
64 Wang Y, Li P, Xiang P, et al. Journal of Materials Chemistry B, 2016, 4(4), 635.
65 Yao C H, Lee C Y, Huang C H, et al. Materials Science & Engineering C Materials for Biological Applications, 2017, 79, 533.
66 Kim J W, Kim M J, Ki C S, et al. International Journal of Biological Macromolecules, 2017, 105, 541.
67 Shanmugasundaram O L, Ahmed K S Z, Sujatha K, et al. Materials Science & Engineering C, 2018, 92, 26.
68 Davidson A, Jina N H, Marsh C, et al. Eplasty, 2013, 13, e45.
69 Jull A, Wadham A, Bullen C, et al. BMJ Open, 2018, 8(2), e20319.
[1] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
[2] 王异彩, 张甜, 李媛. 光聚合PEXS-A水凝胶材料的合成及包埋活细胞的性能[J]. 材料导报, 2020, 34(2): 2169-2173.
[3] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[4] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[5] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[6] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[7] 李进, 赵梓年, 李征征, 薛松, 郑泽邻. 自愈合水凝胶的合成机理及生物医学应用[J]. 材料导报, 2019, 33(19): 3328-3335.
[8] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[9] 林琳, 陈景民, 王会, 李久盛, 陈晋阳, 曾祥琼. 皮肤敷料的研究进展[J]. 材料导报, 2019, 33(1): 65-72.
[10] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[11] 吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
[12] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[13] 王志芳,宣承楷,刘雪敏,施雪涛. 环糊精衍生物水凝胶材料的研究进展[J]. 材料导报, 2018, 32(19): 3456-3464.
[14] 姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
[15] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed