Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5133-5141    https://doi.org/10.11896/cldb.19010025
  高分子与聚合物基复合材料 |
基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展
杨珏莹1, 陈煜1, 赵琳1, 张子涵2, 杨威1, 刘媛3, 彭克林1, 王雅伦1
1 北京理工大学材料学院,北京 100081;
2 北京市海淀外国语实验学校,北京 100195;
3 中国环境保护产业协会,北京 100037
Progress on Constructing of Self-healing Hydrogel Based on Dynamic Reversible Non-covalent System
YANG Jueying1, CHEN Yu1, ZHAO Lin1, ZHANG Zihan2, YANG Wei1, LIU Yuan3, PENG Kelin1, WANG Yalun1
1 School of Materials Science & Engineering, Beijing Institute of Technology,Beijing 100081, China;
2 Beijing Haidian Foreign Language Shi Yan School, Beijing 100195, China;
3 China Association of Environmental Protection Industry, Beijing 100037, China
下载:  全 文 ( PDF ) ( 6433KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 材料的完整性是保证其呈现应有性能的前提,任何破损或缺陷都可能导致材料性能不能满足使用需求。在众多材料中,用作药物缓释载体、组织工程支架和功能器件涂层的水凝胶因其特殊的应用环境而对自我修复性能需求迫切。自愈合水凝胶在受到外界破坏后能自我修复以维持初始性能,保证了使用过程中材料的安全性和可靠性。因此,具有自愈合性能的新型功能材料是目前重要的研究方向。
  基于高分子链之间相互作用力形成的自愈合水凝胶分为两类:(1)通过动态共价键形成的水凝胶,包括双硫键、Diels-Alder环加成反应、亚胺键/席夫碱作用等;(2)通过范德华力或氢键等非共价键作用,即物理交联形成的水凝胶,包括氢键作用、主体-客体之间力的作用、聚阴阳离子间的相互作用、金属配体的相互作用、疏水缔合等。
  由于共价键的稳定性,大多数共价键交联所形成的水凝胶稳定存在并表现出良好的力学性能。然而,这些水凝胶存在对外界刺激反应性低、制造之后不能被重塑、受到破坏之后不能自我修复等局限性,因此发展基于动态共价键或物理交联的自愈合水凝胶已成趋势。自愈合水凝胶不仅具有水凝胶独特的溶胀性能、极高的含水量、良好的生物组织相似性,而且具有自我修复断层的能力,可用于组织工程、伤口敷料、药物缓释、生物传感等生物医学研究领域,可有效延长材料的使用寿命,具有极好的应用前景。
  本文介绍了近年来基于动态可逆非共价体系构建自愈合水凝胶的研究进展,按照不同的愈合机理对自愈合水凝胶进行分类,分别讨论了基于氢键、可逆金属配位作用、疏水缔合以及多种作用力相结合等作用机理构建自愈合水凝胶的方法和应用进展,分析了基于动态可逆非共价构建自愈合水凝胶可能面临的问题,并对其发展前景进行了展望,以期指导此类水凝胶的设计、制备与应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨珏莹
陈煜
赵琳
张子涵
杨威
刘媛
彭克林
王雅伦
关键词:  自愈合水凝胶  氢键  金属配位  疏水缔合  生物医学工程    
Abstract: The integrity of materials is a prerequisite for ensuring their performance. Any damage or defect may result in materials not meeting the requirements of application. For all kinds of materials, self-healing properties are strongly needed, especially for the hydrogels used as drug delivery carriers, tissue engineering scaffolds and functional device coatings because of their special application requirements. Developing self-healing hydrogels which can heal itself to maintain its initial performance after being damaged is vital to ensure the safety and reliability of materials in the use cycle, and thus has attracted more and more attentions.
  In general, self-healing hydrogels can be divided into two types based on the forces between polymer chains. The first kind is formed by dynamic covalent bonds, including disulfide bonds, Diels-Alder cycloaddition reaction, imine bond/Schiff base interaction, etc. Others are formed by physically crosslinking of non-valent bonds like hydrogen bonds or van der Waals’ force, host-guest interaction, the interaction between polyelectrolyte, interaction of metal ligand, hydrophobic association, etc.
  Due to the stability of covalent bonds, most hydrogels formed by covalent bonds are stable and can exhibit good mechanical properties. Howe-ver, these hydrogels have many limitations, including poor response to external stimuli, inability to be remodeled after being manufactured, and unable to heal themselves after being damaged. Thus, the development of self-healing hydrogels based on dynamic covalent or physical crosslinking has become a trend. Self-healing hydrogel not only exhibit high swelling ratio and water content, biocompatibility and biodegradability, but also has the ability to repair the fault, which can be used for tissue engineering, wound dressing, drug release and biosensing fields, prolonging the lifespan of materials and showing excellent application potential.
  This review introduces the progress on the development of self-healing hydrogels based on dynamic reversible non-covalent system in recent years. The self-healing hydrogels are classified according to different healing mechanisms. The fabrication methods and application fields of self-healing hydrogels based on hydrogen bonding, reversible metal coordination, hydrophobic association and various interaction forces are reviewed respectively, and the problems and prospects of hydrogels based on dynamic reversible non-covalent system are discussed, aiming at providing ideas for the design, preparation and application of such hydrogels.
Key words:  self-healing hydrogels    hydrogen bonding    metal coordination    hydrophobic association    biomedical engineering
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  O63  
基金资助: 
通讯作者:  sscyw@bit.edu.cn   
作者简介:  杨珏莹,现为北京理工大学材料学院博士研究生,目前主要从事基于天然高分子的功能性水凝胶的研究;陈煜,博士,北京理工大学材料学院副教授,博士研究生导师。主要从事天然高分子材料改性及在医用、环境保护材料领域的应用研究;.杨威,博士,应用化学专业,助理研究员。主要从事含能材料、功能材料等相关研究及项目管理工作。
引用本文:    
杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
YANG Jueying, CHEN Yu, ZHAO Lin, ZHANG Zihan, YANG Wei, LIU Yuan, PENG Kelin, WANG Yalun. Progress on Constructing of Self-healing Hydrogel Based on Dynamic Reversible Non-covalent System. Materials Reports, 2020, 34(5): 5133-5141.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010025  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5133
1 Xue W, Zhang X M. Biomedical Hydrogel, Jinan University Press, China, 2012(in Chinese).
薛巍,张渊明. 生物医用水凝胶, 暨南大学出版社,2012.
2 Ahmed E M. Journal of Advanced Research, 2015, 6(2), 105.
3 Naahidi S, Jafari M, Logan M, et al. Biotechnology Advances, 2017, 35(5), 530.
4 Bittner S M, Guo J L, Melchiorri A, et al. Materials Today, 2018, 21(8), 861.
5 Kim I L, Mauck R L, Burdick J A. Biomaterials, 2011, 32(34), 8771.
6 Malafaya P B, Silva G A, Reis R L. Advanced Drug Delivery Reviews, 2007, 59(4-5), 207.
7 Drury J L, Mooney D J. Biomaterials, 2003, 24(24), 4337.
8 Hynes R O. Science, 2009, 326(5957), 1216.
9 Sepantafar M, Maheronnaghsh R, Mohammadi H, et al. Biotechnology Advances, 2016, 34(4), 362.
10 Kuzmenko V, Samfors S, Hagg D, et al. Materials Science and Enginee-ring: C, 2013, 33(8), 4599.
11 Park S, Kim G, Jeon Y C, et al. Journal of Materials Science: Materials in Medicine, 2009, 20(1), 229.
12 Rederstorff E, Rethore G, Weiss P, et al. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11(4), 1152.
13 Saludas L, Pascual-Gil S, Prósper F, et al. International Journal of Pharmaceutics, 2017, 523(2), 454.
14 Park M H, Subbiah R, Kwon M J, et al. Carbohydrate Polymers, 2018, 202, 488.
15 Xavier J R, Thakur T, Desai P, et al. ACS Nano, 2015, 9(3), 3109.
16 Radhakrishnan J, Krishnan U M, Sethuraman S. Biotechnology Advances, 2014, 32(2), 449.
17 Fathi P, Sikorski M, Christodoulides K, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018, 106(5), 1662.
18 Shamloo A, Sarmadi M, Aghababaie Z, et al. International Journal of Pharmaceutics, 2018, 537(1-2), 278.
19 Ye B H, Meng L, Li L H, et al. Acta Polymerica Sinica, 2016(2), 134(in Chinese).
叶碧华,孟璐,李立华,等. 高分子学报, 2016(2),134.
20 Hao X, Liu H, Xie Y, et al. Colloid and Polymer Science, 2013, 291(7), 1749.
21 Tseng T, Hsieh F, Theato P, et al. Biomaterials, 2017, 133, 20.
22 Cheng C, Bai X, Zhang X, et al. Journal of Polymer Research, 2015, 22,46.
23 White S R, Sottos N R, Geubelle P H, et al. Nature, 2001, 409(6822), 794.
24 王朝阳,张光照. 中国专利, CN201710162761, 2017.
25 王路,李书彬,于雪梅,等. 中国专利,专利号CN107118357A, 2017.
26 Shao C, Chang H, Wang M, et al. ACS Applied Materials & Interfaces, 2017, 9(34), 28305.
27 Ni B, Xie H, Tang J, et al. Chemical Communications, 2016, 52(67), 10257.
28 Mamiya J, Yoshitake A, Kondo M, et al. Journal of Materials Chemistry, 2008, 18(1), 63.
29 Huo S J. Self-healing alginate hydrogels based on supramolecular interaction. Master’s Thesis, South China University of Technology, China, 2016(in Chinese).
霍双君. 基于超分子作用的可自修复海藻酸水凝胶. 硕士学位论文,华南理工大学,2016.
30 Ren B, Chen X, Du S, et al. International Journal of Biological Macromolecules, 2018, 118, 1257.
31 Yang L, Li Y, Gou Y, et al. Polymer Chemistry, 2017, 8(34),3071.
32 Fu F, Chen Z, Zhao Z, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(23),5900.
33 Kang M, Liu S, Oderinde O, et al. Materials & Design, 2018, 148,96.
34 Shi L, Wang F, Zhu W, et al. Advanced Functional Materials, 2017, 27(37),1700591.
35 Wei Z, Yang J H, Liu Z Q, et al. Advanced Functional Materials, 2015, 25(9),1352.
36 Cheng C, Zhang X, Meng Y, et al. Soft Matter, 2017, 13(16),3003.
37 Luo F, Sun T L, Nakajima T, et al. Macromolecules, 2014, 47(17),6037.
38 Kakuta T, Takashima Y, Nakahata M, et al. Advanced Materials, 2013, 25(20),2849.
39 Cui J, Nie F, Yang J, et al. Journal of Materials Chemistry A, 2017, 5(48),25220.
40 林权,赵月,杨旭东,等. 中国专利, CN106009003A, 2016.
41 Gulyuz U, Okay O. Macromolecules, 2014, 47(19),6889.
42 Sun J C, Gao Y, Yang M, et al. Chemical Engineer, 2016, 30(7), 6(in Chinese).
孙嘉辰,高玥,杨梅,等. 化学工程师, 2016, 20(7), 6.
43 Haraguchi K, Uyama K, Tanimoto H. Macromolecular Rapid Communications, 2011, 32(16), 1253.
44 Zhang G, Ngai T, Deng Y, et al. Macromolecular Chemistry and Physics, 2016, 217(19), 2172.
45 Yanagisawa Y, Nan Y, Okuro K, et al. Science, 2018, 359(6371), 72.
46 Liu B, Wang Y, Miao Y, et al. Biomaterials, 2018, 171, 83.
47 Maes F, Montarnal D, Cantournet S, et al. Soft Matter, 2012, 8(5), 1681.
48 Gong G S, Liu J B, Zhong Y P, et al. Chemical Industry and Enginee-ring Progress,2016, 35(8), 2507(in Chinese).
龚桂胜,刘景勃,钟玉鹏,等. 化工进展, 2016, 35(8), 2507.
49 Dai X, Zhang Y, Gao L, et al. Advanced Materials, 2015, 27(23), 3566.
50 Balkenende D W R, Monnier C A, Fiore G L, et al. Nature Communications, 2016, 7(1), 10995.
51 Cui J, Del Campo A. Chemical Communications, 2012, 48(74), 9302.
52 Rong Q, Lei W, Chen L, et al. Angewandte Chemie, 2017, 56(45), 14159.
53 Zhi H, Fei X, Tian J, et al. Journal of Materials Chemistry B, 2017, 5(29), 5738.
54 Yu C, Geng J, Zhuang Y, et al. Carbohydrate Polymers, 2016, 152, 327.
55 Liang H, Zhang Z, Yuan Q, et al. Chemical Communications, 2015, 51(82), 15196.
56 Yang Q, Li X F, Long S J, et al. Acta Materiae Compositae Sinica, 2017,34(7),1416(in Chinese).
杨倩,李学锋,龙世军,等. 复合材料学报, 2017,34(7),1416.
57 Zhang K, Feng Q, Xu J, et al. Advanced Functional Materials, 2017, 27(34), 1701642.
58 Yavvari P S, Pal S, Kumar S, et al. ACS Biomaterials Science & Engineering, 2017, 3(12), 3404.
59 Casuso P, Odriozola I, Pérez-San Vicente A, et al. Biomacromolecules, 2015, 16(11), 3552.
60 Gantar A, Drnovsek N, Casuso P, et al. RSC Advances, 2016, 6(73), 69156.
61 Pérez-San Vicente A, Peroglio M, Ernst M, et al. Biomacromolecules, 2017, 18(8), 2360.
62 Qin H, Zhang T, Li H, et al. Chemistry, 2017, 3(4), 691.
63 Jiang G Q. Studies on preparation and properties of aqueous solutions and hydrogels of hydrophobically modified polyacrylamide. Master’s Thesis, Jilin University, China, 2010(in Chinese).
姜国庆. 疏水改性聚丙烯酰胺水溶液和水凝胶的制备与性质研究. 硕士学位论文,吉林大学,2010.
64 Tuncaboylu D C, Argun A, Sahin M, et al. Polymer, 2012, 53(24),5513.
65 Algi M P, Okay O. European Polymer Journal, 2014, 59,113.
66 Owusu-Nkwantabisah S, Gillmor J, Bennett G, et al. Polymer, 2018, 145,374.
67 Gu S, Duan L, Ren X, et al. Journal of Colloid and Interface Science, 2017, 492,119.
68 Chen Q, Zhu L, Chen H, et al. Advanced Functional Materials, 2015, 25(10),1598.
69 Zhang G, Lv L, Deng Y, et al. Macromolecular Rapid Communications, 2017, 38(12),1700018.
70 Kawamoto K, Grindy S C, Liu J, et al. ACS Macro Letters, 2015, 4(4),458.
71 Li S, Wang L, Yu X, et al. Materials Science & Engineering C: Mate-rials for Biological Applications, 2018, 82,299.
72 Tang L, Chen X, Wang L, et al. Polymer Chemistry, 2017, 8(32),4680.
73 Qu J, Zhao X, Liang Y, et al. Biomaterials, 2018, 183,185.
74 Xie W, Gao Q, Guo Z, et al. ACS Applied Materials & Interfaces, 2017, 9(39),33660.
75 Garza-Navarro M A, Torres-Castro A, Garcia-Gutierrez D I, et al. Journalof Physical Chemistry C, 2010, 114(41),17574.
76 Grondin P, Roubeau O, Castro M, et al. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(7),5184.
[1] 王宗乾, 杨海伟. pH值对海藻酸钠溶液黏度及体系中氢键的影响规律[J]. 材料导报, 2019, 33(8): 1289-1292.
[2] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[3] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[4] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[5] 荣辉, 魏冠奇, 张磊, 张颖, 徐蕊, 宁彩珍, 王雪平. 微生物胶凝材料固结垃圾焚烧飞灰效果及机制[J]. 材料导报, 2019, 33(22): 3757-3761.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed