Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3328-3335    https://doi.org/10.11896/cldb.18070178
  高分子与聚合物基复合材料 |
自愈合水凝胶的合成机理及生物医学应用
李进1, 赵梓年1, 李征征1,2,3,4, 薛松1, 郑泽邻5
1 天津科技大学化工与材料学院,天津 300457;
2 复旦大学聚合物分子工程国家重点实验室,上海 200433;
3 天津科技大学天津市海洋资源与化学重点实验室,天津 300457;
4 天津科技大学天津市制浆造纸重点实验室,天津 300457;
5 南京霖厚环保科技有限公司,南京 210001
Synthetic Mechanism and Biomedical Application of Self-healing Hydrogel
LI Jin1, ZHAO Zinian1, LI Zhengzheng1,2,3,4, XUE Song1, ZHENG Zelin5
1 School of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457;
2 State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433;
3 Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457;
4 Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science & Technology, Tianjin 300457;
5 Nanjing Linhou Environmental Protection Technology Co., Ltd., Nanjing 210001
下载:  全 文 ( PDF ) ( 2246KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高分子水凝胶是一种具有极高含水量的软物质,一般由低交联度的聚合物构成。水凝胶结构和性质与人体软组织高度相似,因此水凝胶已被广泛应用于生物医学等领域。自我修复水凝胶是一种可以在受到损伤后,自动恢复其完整性和自身功能的一类新型水凝胶。迄今为止,研究者通过物理或动态化学键合成了多种自愈合水凝胶。物理交联水凝胶是通过多重氢键作用、主-客体相互作用、离子键、金属配位、疏水相互作用和超分子相互作用等合成的。化学交联水凝胶则是通过动态化学键合成的自愈合水凝胶,与物理自愈合水凝胶相比,其内部交联网络连接强度较高,从而导致其具有更快的自愈过程和更高的机械强度。因此,动态化学键,如亚胺键、酰腙键和二硫键已被广泛用于制备自愈合水凝胶。
自愈合水凝胶作为一种新型智能材料,在医疗生物领域具有十分广泛的应用前景。然而,大部分水凝胶是响应外部刺激反应的亲水性交联三维体系。在体内,一旦外部机械力或生理侵蚀破坏了水凝胶结构的完整性,水凝胶的功能性就会丧失。因此,在使用过程中水凝胶的结构和功能完整性会受到外部机械力或化学侵蚀的影响,特别是在复杂的体内环境中。为解决这一问题,已经设计开发出的具有内在自愈合能力的自愈合水凝胶可以克服内外环境的破坏性因素。凭借自愈能力,水凝胶在有外界刺激或无外界刺激的情况下修复自身损伤并恢复其原有结构和性能,从而提高水凝胶的可靠性与安全性。与传统水凝胶相比,自愈合水凝胶具有更长的使用寿命和更好的力学性能,使得自愈合水凝胶尤其是在三维细胞培养、组织工程、药物传送等方面具有更广阔的应用前景。
由于自愈合水凝胶的研究尚处于起步阶段,目前大多数研究还处于探索寻求新型自愈合水凝胶体系的阶段。本文重点介绍了自愈合水凝胶的最新研究进展,对目前报道的一些自愈合水凝胶的合成策略进行总结与分析并阐述其自愈机理,即非共价键(物理键)包括多重氢键作用、疏水相互作用和主-客体相互作用,动态共价键(化学键)包括亚胺键、酰腙键。此外,分析了影响水凝胶自愈合性能的主要因素及其在组织工程、药物传送等生物医学领域的广泛应用,以期为制备性能优异的新型水凝胶提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李进
赵梓年
李征征
薛松
郑泽邻
关键词:  水凝胶  自愈性  非共价键  动态共价键  生物医学领域    
Abstract: Apolymer hydrogel is a soft material with high water content and generally composed of a polymer having a low degree of crosslinking. Hydrogels have been widely used in biomedical fields due to their advantages such as the structure and properties of hydrogels and the extremely high similarity of human soft tissues. Self-healing hydrogels are a new class of hydrogels that automatically restore their integrity and function after injury. Self-healing properties are important for extending the life of the material that is difficult to manufacture. To date, a variety of self-healing hydrogels have been synthesized by physical or dynamic chemical bonding. Physically crosslinked hydrogels are generally synthesized by multiple hydrogen bonding, host-guest interactions, ionic bonds, metal coordination, hydrophobic interactions, and supramolecular interactions. Chemical cross-linked self-healing hydrogels synthesized by dynamic chemical bonding have higher internal crosslink network strength than physical self-healing hydrogels, resulting in faster self-healing processes and higher mechanical strength. Therefore, dynamic chemical linkages such as imine bonds, hydrazide bonds and disulfide bonds, have been widely used to prepare self-healing hydrogels.
As a new intelligent material, self-healing hydrogel has a wide application prospect in the field of medical biology. However, most hydrogels are three-dimensional systems of hydrophilic cross-linking in response to external stimuli. In vivo, once external mechanical forces or physiological erosion disrupts the structural integrity of the hydrogel, the functionality of the hydrogel is lost. Thus, the structural and functional integrity of the hydrogel during use may be affected by external mechanical forces or chemical attack, particularly in complex in vivo environments. In order to solve this problem, self-healing hydrogel with intrinsic self-healing ability can overcome internal and external environmental destructive factors that has been designed and developed. With self-healing capabilities, hydrogels can repair their damage and restore their original structure and perfor-mance with or without external stimuli, improving reliability and safety. Compared with traditional hydrogels, self-healing hydrogels have a longer service life and higher mechanical properties, which makes self-healing hydrogels have broader application prospects, especially in three-dimensional cell culture, tissue engineering and drug delivery.
Since the research on self-healing hydrogels is still in its infancy, most of the research is still in the stage of exploring new self-healing hydrogel systems. In this review, the latest developments in self-healing hydrogels are highlighted, and the synthesis strategies of some self-healing hydrogels reported so far are summarized and analyzed, and the self-healing mechanism is described. Non-covalent bonds (physical bonds) include multiple hydrogen bonding, hydrophobic interactions, host-guest interactions, and dynamic covalent bonds (chemical bonds) include imine bonds and hydrazide bonds. In addition, the main factors affecting the self-healing properties of hydrogels and their extensive applications in biomedical fields such as tissue engineering and drug delivery were analyzed, which provide references for the preparation of novel self-healing hydrogels with superior performance.
Key words:  hydrogel    self-healing    non-covalent bond    dynamic covalent bond    biomedical field
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  O63  
基金资助: 基金项目:2018年度天津市教委科研计划项目(2018KJ110);天津市海洋资源与化学重点实验室(天津科技大学)(201706);天津市制浆造纸重点实验室(天津科技大学)开放基金资助项目(201809)
作者简介:  李进,2017年6月毕业于烟台大学,获得工学学士学位。现为天津科技大学化工与材料学院硕士研究生,在李征征老师的指导下进行研究。目前主要研究领域为高分子智能水凝胶。li.z.z@tust.edu.cn。赵梓年,天津科技大学化工与材料学院副教授、硕士研究生导师。主持参与各类项目13项。主要从事高分子材料改性及加工技术,微孔及过滤材料,环境友好高分子材料的研究。参加天津市教委教改项目“计算机模拟高分子材料成型加工模式研究”,获得天津市教学成果二等奖。参编著作主要有:《塑料成型工艺学》《橡胶加工实用技术》。李征征,2014年2月毕业于韩国忠南大学,获得工学博士学位。现为天津科技大学化工与材料学院副研究员。目前主要研究领域为智能高分子水凝胶及其生物应用。These authors contributed equally to this work.
引用本文:    
李进, 赵梓年, 李征征, 薛松, 郑泽邻. 自愈合水凝胶的合成机理及生物医学应用[J]. 材料导报, 2019, 33(19): 3328-3335.
LI Jin, ZHAO Zinian, LI Zhengzheng, XUE Song, ZHENG Zelin. Synthetic Mechanism and Biomedical Application of Self-healing Hydrogel. Materials Reports, 2019, 33(19): 3328-3335.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070178  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3328
1 Prestwich G D, Marecak D M, Marecek J F, et al. Journal of Controlled Release,1998,53(1),93.2 Campoccia D, Doherty P, Radice M, et al. Biomaterials,1998,19(23),2101.3 Peppas N A, Hilt J Z. Advanced Materials,2006,18,1345.4 Hennink W E, van Nostrum. Advanced Drug Delivery Reviews,2002,54(1),13.5 Shen W, Luan J, Cao L, et al. Biomacromolecules,2015,16(1)105.6 Cao L, Cao B, Lu C, et al. Journal of Material Chemistry,2014,3(7),1268.7 Chen Y, Shen W. Scientific Reports,2016,6,31593.8 Chen Y, Luan J. ACS Applied Materials & Interfaces,2016,8(45),30703.9 Slaughte B V, Khurshid S S. Advanced Materials,2009,21(32-33),3307.10 Phadke A, Zhang C, Arman B, et al. Proceedings of the National Academy of Sciences of the United States of America,2012,109(12),4383.11 Huebsch N, Kearney C J, Zhao X, et al. Proceedings of the National Academy of Sciences of the United States of America,2014,111(27),9762.12 Wei Z, Yang J H, Du X J, et al. Macromolecular Rapid Communications,2013,34(18),1464.13 Yang W J, Tao X, Zhao T, et al. Polymer Chemicals,2015,6(39),7027.14 Yu F, Cao X, Du J. ACS Applied Materials & Interfaces,2015,7(43),24023.15 Can V, Kochovski Z, Reiter V, et al. Macromolecules,2016,49(27),43.16 Appel E A, Tibbitt M W, Webber M, et al. Nature Communications,2015,6,6295.17 Luo F, Sun T L, Nakajima T, et al. Macromolecules,2014,47(17),6037.18 Liu F, Li F, Deng G, et al. Macromolecules,2012,45(3),1636.19 Tuncaboylu D C, Sari M, Oppermann W, et al. Macromolecules,2011,44(12),4997.20 Tuncaboylu D C, Sahin M, Argun A, et al. Macromolecules,2012,45(4),1991.21 Tuncaboylu D C, Argun A, Sahin M, et al. Polymer,2012,53(24),5513.22 Zhang H, Xia H, Zhao Y, et al. ACS Macro Letters,2012,1(11),1233.23 Ahn B K, Lee D W, Israelachvili J N, et al. Nature Materials,2014,13(9),867.24 Nakahata M, Takashima Y, Yamaguchi H, et al. Nature Communications,2011,2(1),511.25 Kakuta T, Takashima Y, Nakahata M, et al. Advanced Materials,2013,25(20),2849.26 Appel E A, Loh X J, Jones S T, et al. Journal of American Chemical Society,2012,134(28),11767.27 Ihsan A B, Sun T L, Kurokawa T, et al. Macromolecules,2016,49(11),4245.28 Luo F, Sun T L, Nakajima T, et al. Advanced Materials,2015,27(17),2722.29 Zhang Y, Tao L, Shuxi L, et al. Biomacromolecules,2011,12(8),2894.30 Lyu U S, Gao C, Xu X, et al. ACS Applied Materials & Interfaces,2015,7(23),13029.31 Chang R, Wang X, Li X, et al. ACS Applied Materials & Interfaces,2016,8(38),25544.32 Wei Z, Yang J H, Liu Z Q, et al. Advanced Functional Materials,2015,25(9),1352.33 Tachedjian G, Mellors J W, Bazmi H, et al. Chemical Society Reviews,2013,42(20),8106.34 He L, Fullenkamp D E, Rivera J G, et al. Chemical Communications,2011,47(26),7497.35 Deng C C, Brooks W L A, Abboud K A, et al. ACS Macro Letters,2015,4(2),220.36 Deng G, Li F, Yu H, et al. ACS Macro Letters,2012,1(2),275.37 Yuan L, Ren L, Tian X, et al. RSC Advances,2016,6(75),71425.38 Miao T, Fenn S L, Charron P N, et al. Biomacromolecules,2011,16(12),3740.39 Chen H, Ma X, Wu S, et al. Angewandte Chemie International Edition,2014,53(51),14149.40 Huang W, Wang Y, Chen Y, et al. Advanced Healthcare Materials,2016,5(21),2813.41 Ziół kowski B, Florea L, Theobald J, et al. Soft Matter,2013,9(36),8754.42 Algi M P, Okay O. European Polymer Journal,2014,59,113.43 Gao T T, Niu N, Liu Y D, et al. RSC Advances,2016,6(49),43463.44 Hentschel J, Kushner A M, Ziller J, et al. Angewandte Chemie International Edition,2012,51(42),10561.45 Guo L, Zhang H, Fortin D, et al. Langmuir,2015,31(42),11709.46 Li Qiwen, Liu Chenlu, Wen Junru, et al. Soft Matter,2015,11(30),6152.47 Zhang G, Ngai T, Deng Y. Macromol, et al. Chemical Physics,2016,217(19),2172. 48 Chirila T V, Hui H L, Oddon M, et al. Journal of Applied Polymer Science,2014,131(4),1001.49 Cui Jiaxi. Chemical Communications,2012,48,9302.50 Lin Y, Li G. Journal of Material Chemical B,2014,2(39),6878.51 Maartje M C Bastings, Stefan Koudstaal, Kieltyka R E, et al. Advanced Healthcare Materials,2014,3(1),70.52 Peng L, Zhang H, Feng A, et al. Polymer Chemical,2015,6(19),3652.53 Jia Y G, Zhu X X. Chemical Materials,2015,27(1),387.54 Li G, Wu J, Wang B, et al. Biomacromolecules,2015,16(11),3508.55 Akay G, Hassanraeisi A, Tuncaboylu D C, et al. Soft Matter,2013,9(7),2254.56 Rodell C B, Dusaj N N, Highley C B. Advanced Materials,2016,28(38),8419.57 Miyamae K, Nakahata M, Takashima Y, et al. Angewandte Chemie International Edition,2015,127(31),8984.58 Jia Y G, Zhu X X. Chemical Materials,2015,27(1),387.59 Zhang Y, Tao L, Li S, et al. Biomacromolecules,2011,12(8),2894.60 Zhang Y, Yang B, Zhang X, et al. Chemical Communications,2012,48(74),9305.61 Huang W, Wang Y, Chen Y, et al. Advanced Healthcare Materials,2016,5(21),2813.62 Deng G, Tang C, Li F, et al. Macromolecules,2010,43(3),1191.63 Gulyuz U, Okay O. Macromolecules,2014,47(19),6889.64 Huang W, Wang Y, Chen Y, et al. Advanced Healthcare Materials,2016,5(21),2813.65 Lu H, Zhang Y, Xong, L, et al. ACS Applied Materials & Interfaces,2016,8(42),29088.66 Liu J, Wang K, Luan J, et al. Journal of Material Chemical B,2016,4(7),1343.67 Seliktar M, Dror N. Science,2012,336(6085),1124.68 Yang L, Li Y, Gou Y, et al. Polymer Chemistry,2017,8,5071.69 Yang B, Zhang Y, Zhang X, et al. Polymer Chemistry,2012,3,3235.
[1] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[2] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[3] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[4] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[5] 陈龙, 李文芳, 祝闻. 6063铝合金表面钛/锆/钼转化膜的制备及自愈性[J]. 材料导报, 2019, 33(10): 1691-1696.
[6] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[7] 吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
[8] 王志芳,宣承楷,刘雪敏,施雪涛. 环糊精衍生物水凝胶材料的研究进展[J]. 材料导报, 2018, 32(19): 3456-3464.
[9] 姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
[10] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[11] 姬东方, 史婷婷, 常欢, 宋旭锋, 于艳敏. 卟啉分子识别中的非共价键相互作用[J]. 材料导报, 2018, 32(17): 3068-3075.
[12] 胡耀强, 陈法锦, 刘海宁, 张慧芳, 吴志坚, 叶秀深. 聚N-异丙基丙烯酰胺水凝胶的制备及热致聚集行为[J]. 《材料导报》期刊社, 2018, 32(14): 2491-2496.
[13] 王静,刘红科,刘平生,李利. 高强度水凝胶纳米复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 67-75.
[14] 史婷婷, 姬东方, 于艳敏. 卟啉聚集行为的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 46-52.
[15] 孙舒鑫, 焦体峰, 张乐欣. 载银纳米颗粒多响应性复合水凝胶研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 62-68.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed